Technical Library: past solder (Page 14 of 17)

Factors That Influence Side-Wetting Performance on IC Terminals

Technical Library | 2023-08-04 15:27:30.0

A designed experiment evaluated the influence of several variables on appearance and strength of Pb-free solder joints. Components, with leads finished with nickel-palladium-gold (NiPdAu), were used from Texas Instruments (TI) and two other integrated circuit suppliers. Pb-free solder paste used was tin-silver-copper (SnAgCu) alloy. Variables were printed wiring board (PWB) pad size/stencil aperture (the pad finish was consistent; electrolysis Ni/immersion Au), reflow atmosphere, reflow temperature, Pd thickness in the NiPdAu finish, and thermal aging. Height of solder wetting to component lead sides was measured for both ceramic plate and PWB soldering. A third response was solder joint strength; a "lead pull" test determined the maximum force needed to pull the component lead from the PWB. This paper presents a statistical analysis of the designed experiment. Reflow atmosphere and pad size/stencil aperture have the greatest contribution to the height of lead side wetting. Reflow temperature, palladium thickness, and preconditioning had very little impact on side-wetting height. For lead pull, variance in the data was relatively small and the factors tested had little impact.

Texas Instruments

Broadband Printing - A Paradigm

Technical Library | 2008-12-03 19:39:00.0

This paper presents the analysis from a recent printing study employing a test vehicle that includes components such as 01005s to QFPs. In a recent publication, part of this study was presented focusing on 01005 printing only. This printing process was determined to be suitable for 01005s assembly and also analyzed based on statistical capability. The current paper will present the results from additional detailed analysis to determine if this process has the capability to provide sufficient solder paste deposits for larger components located on the same test board. In the future, the SMT industry may always look towards “Broadband Printing” as an alternative to dual stencil or stepped stencil printing technologies in order to meet the needs of both small and large components.

Speedline Technologies, Inc.

Improve SMT Assembly Yields Using Root Cause Analysis in Stencil Design

Technical Library | 2018-07-18 16:28:26.0

Reduction of first pass defects in the SMT assembly process minimizes cost, assembly time and improves reliability. These three areas, cost, delivery and reliability determine manufacturing yields and are key in maintaining a successful and profitable assembly process. It is commonly accepted that the solder paste printing process causes the highest percentage of yield challenges in the SMT assembly process. As form factor continues to get smaller, the challenge to obtain 100% yield becomes more difficult.This paper will identify defects affecting SMT yields in the printing process and discuss their Root Cause. Outer layer copper weight and surface treatment will also be addressed as to their effect on printability. Experiments using leadless and emerging components will be studied and root cause analysis will be presented

FCT ASSEMBLY, INC.

Robust Reliability Testing For Drop-on-Demand Jet Printing

Technical Library | 2020-03-19 00:23:15.0

In this study, the question was how to perform statistically reliable robust- ness tests for the non-contact drop-on-demand printing of functional fluids, such as solder paste and conductive adhesives. The goal of this study was to develop a general method for hypothesis testing when robustness tests are performed. The main problem was to determine if there was a statistical difference between two means or proportions of jet printing devices. In this study, an example of jetting quality variation was used when comparing two jet printing ejector types that differ slightly in design. We wanted to understand if the difference in ejector design can impact jetting quality by performing robustness tests. and thus answer the question, "Can jetting differences be seen between ejector design 1 and design 2"?

Mycronic AB

Effect Of Board Clamping System On Solder Paste Print Quality

Technical Library | 2010-05-06 18:46:29.0

Stencil printing technology has come a long way since the early 80’s when SMT process gained importance in the electronics packaging industry. In those early days, components were fairly large, making the board design and printing process relatively simple. The current trend in product miniaturization has led to smaller and more complex board designs. This has resulted into designs with maximum area utilization of the board space. It is not uncommon, especially for hand held devices, to find components only a few millimeters from the edge of the board. The board clamping systems used in the printing process have become a significant area of concern based on the current board design trend.

Speedline Technologies, Inc.

Operation of a Vacuum Reflow Oven with Void Reduction Data

Technical Library | 2021-04-21 19:28:30.0

Voids affect the thermal characteristics and mechanical properties of a solder joint, thereby affecting the reliability of the solder interconnect. The automotive sector in particular is requiring the mitigation of solder voids in various electronic control modules to the minimum possible level. Earlier research efforts performed to decrease voids involved varying the reflow profile, paste deposit, paste alloy composition, stencil aperture, and thickness.

BTU International

Low Temperature SMT Solder Evaluation

Technical Library | 2020-09-23 21:29:25.0

The electronics industry could benefit greatly from using a reliable, manufacturable, reduced temperature, SMT solder material (alloy-composition) which is cost competitive with traditional Sn3Ag0.5Cu (SAC305) solder. The many possible advantages and some disadvantages / challenges are discussed. Until recently, the use of Sn/Bi based materials has been investigated with negative consequences for high strain rate (drop-shock) applications and thus, these alloys have been avoided. Recent advances in alloy "doping" have opened the door to revisit Sn/Bi alloys as a possible alternative to SAC-305 for many applications. We tested the manufacturability and reliability of three low-temperature and one SAC-305 (used as a control) solder paste materials. Two of these materials are doped Sn/Bi/Ag and one is just Sn/Bi/Ag1%. We will discuss the tests and related results. And lastly, we will discuss the prospects, applications and possible implications (based on this evaluation) of these materials together with future actions.

Flextronics International

Addressing the Challenge of Head-In-Pillow Defects in Electronics Assembly

Technical Library | 2013-12-27 10:39:21.0

The head-in-pillow defect has become a relatively common failure mode in the industry since the implementation of Pb-free technologies, generating much concern. A head-in-pillow defect is the incomplete wetting of the entire solder joint of a Ball-Grid Array (BGA), Chip-Scale Package (CSP), or even a Package-On-Package (PoP) and is characterized as a process anomaly, where the solder paste and BGA ball both reflow but do not coalesce. When looking at a cross-section, it actually looks like a head has pressed into a soft pillow. There are two main sources of head-in-pillow defects: poor wetting and PWB or package warpage. Poor wetting can result from a variety of sources, such as solder ball oxidation, an inappropriate thermal reflow profile or poor fluxing action. This paper addresses the three sources or contributing issues (supply, process & material) of the head-in-pillow defects. It will thoroughly review these three issues and how they relate to result in head-in pillow defects. In addition, a head-in-pillow elimination plan will be presented with real life examples will be to illustrate these head-in-pillow solutions.

Indium Corporation

Assessing the Effectiveness of I/O Stencil Aperture Modifications on BTC Void Reduction

Technical Library | 2018-09-26 20:33:26.0

Bottom terminated components, or BTCs, have been rapidly incorporated into PCB designs because of their low cost, small footprint and overall reliability. The combination of leadless terminations with underside ground/thermal pads have presented a multitude of challenges to PCB assemblers, including tilting, poor solder fillet formation, difficult inspection and – most notably – center pad voiding. Voids in large SMT solder joints can be difficult to predict and control due to the variety of input variables that can influence their formation. Solder paste chemistries, PCB final finishes, and reflow profiles and atmospheres have all been scrutinized, and their effects well documented. Additionally, many of the published center pad voiding studies have focused on optimizing center pad footprint and stencil aperture designs. This study focuses on I/O pad stencil modifications rather than center pad modifications. It shows a no-cost, easily implemented I/O design guideline that can be deployed to consistently and repeatedly reduce void formation on BTC-style packages.

AIM Solder

New Requirements for SIR Measurement

Technical Library | 2015-02-27 16:46:30.0

During the last period of newly assembled electrical devices (pcbs), new component types like LGA and QFN were also qualified as well as smaller passive components with reliability requirements based on the automotive and industrial industry. In the narrow gaps under components, residues can accumulate more by the capillary forces. This is not that much a surface resistance than an interface issue. Also that the flux residues under such types of components creates interaction with the solder resists from the pcb, as well as the component body was not completely described in the standard SIR measurement. On the other hand also, electrical influence with higher voltage creates new terms and conditions, in particular the combination of power and logic in such devices. The standard SIR measurement cannot analyze those combinations.The paper will discuss the requirements for a measurement process, and will give results. The influences of the pcb and component quality will also be discussed. Furthermore it will describe requirements for nc solder paste to increase the chemical/thermical/electrical reliability for whole devices

Heraeus


past solder searches for Companies, Equipment, Machines, Suppliers & Information

Circuit Board, PCB Assembly & electronics manufacturing service provider

Reflow Soldering 101 Training Course


Stencil Printing 101 Training Course
Void Free Reflow Soldering

Best Reflow Oven
SMT feeders

World's Best Reflow Oven Customizable for Unique Applications