Technical Library | 2023-09-18 03:06:18.0
Our SMT fully automatic printers are the perfect solution for businesses of all sizes. They are designed to be high-quality, affordable, and easy to use. Our printers are equipped with the latest features and technology to ensure accurate and consistent solder paste printing. They are also easy to set up and operate, making them a great choice for businesses that are new to SMT assembly.
Technical Library | 2024-03-19 07:58:40.0
Introduction of Solder Paste Jet Dispensing Machine Step into the future of manufacturing with the Solder Paste Jet Dispensing Machine, meticulously crafted in Japan under the esteemed I.C.T brand. This cutting-edge equipment represents the pinnacle of precision engineering, delivering unrivaled performance and reliability. Let's dive into its exceptional features and applications. Transmission Structure System of Solder Paste Jet Dispensing Machine At the heart of this Solder Paste Jet Dispensing Machine lies a meticulously designed transmission structure system. Powered by X Y linear motor drive control, it achieves unprecedented precision in positioning. With a reciprocating position accuracy of 3σ±5um and a dynamic position accuracy of 3σ±3um across the X, Y, and Z axes, it ensures flawless execution of tasks with minimal deviation. The load-type gantry structure further enhances stability and accuracy, guaranteeing consistent performance even during high-speed operations. Advanced Function Configuration Flexibility and customization are the hallmarks of the Solder Paste Jet Dispensing Machine. It features a customizable platform tailored to meet the specific needs of diverse applications, ensuring optimal performance and efficiency. Additionally, the machine boasts advanced functionalities such as automatic correction of substrate warp height and real-time penetration monitoring. Equipped with dual cameras, it provides precise feedback for adjustments during the filling process, ensuring unmatched precision and quality. Function configuration.jpg Vision Non-stop Experience uninterrupted precision with the Vision Non-stop functionality of this machine. Capable of detecting 100 chips per second, it automatically identifies position and height deviations, enabling real-time compensation for coating actions. Dual compensation for path and glue amount further optimizes efficiency, minimizing waste and maximizing productivity. With its ability to print solder paste dots as small as 110um, it's perfectly suited for high-precision applications in ICs, BGAs, and beyond. Versatility in Configuration Options and Applications Adaptability is key in modern manufacturing, and the Solder Paste Jet Dispensing Machine delivers on all fronts. Offering a range of configuration options, including different valves tailored to various material viscosities and fluidity, it ensures optimal performance across diverse production scenarios. From semiconductor packages to LED back-end Mini-LED production, its versatility knows no bounds, making it an indispensable asset in a wide range of industries. Explore the Future of Manufacturing with I.C.T Join the ranks of industry leaders embracing the future of manufacturing with I.C.T's Solder Paste Jet Dispensing Machine. With its unrivaled precision, speed, and reliability, it's set to revolutionize your production processes and propel your business to new heights of success. Don't just keep up with the competition--surpass it with I.C.T's cutting-edge solutions. Unlock the Potential of Precision Manufacturing Delve deeper into the transformative power of precision manufacturing and discover how the Solder Paste Jet Dispensing Machine can unlock new possibilities for your business. From reducing production costs to improving product quality, the benefits are endless. Partner with I.C.T today and embark on a journey towards manufacturing excellence. Conclusion In conclusion, our Solder Paste Jet Dispensing Machine embodies the fusion of Japanese precision and I.C.T reliability, offering unparalleled efficiency in solder paste dispensing. With its advanced features and customizable options, it caters to the diverse needs of modern manufacturing processes. Experience the pinnacle of dispensing technology with our Solder Paste Jet Dispensing Machine. Overseas Technical Support by I.C.T At I.C.T, our commitment to customer satisfaction extends beyond the initial purchase. We provide comprehensive overseas technical support, including machine installation, debugging, and customer training. Our dedicated team ensures that your production line runs smoothly from the first product off the line to the seamless delivery of the machine. Partner with I.C.T today and elevate your manufacturing precision with our Solder Paste Jet Dispensing Machine. Contact us now to learn more about our solutions and take your production processes to new heights of efficiency and reliability.
Technical Library | 2024-02-02 07:48:31.0
Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer In today's rapidly evolving electronics manufacturing landscape, optimizing efficiency, cost-effectiveness, and precision remains paramount. Businesses engaged in producing industrial control boards, computer motherboards, mobile phone motherboards, and mining machine boards face ongoing challenges in streamlining production processes. The integration of expensive equipment strains budgets, making the creation of an efficient, cost-effective high-speed SMT line a daunting task. However, a solution exists that seamlessly combines these elements into a singular, high-performance, and cost-effective SMT line. Let's delve into the specifics. A Comprehensive High-Speed SMT Line Our innovative solution amalgamates two pivotal components: a cutting-edge SMT (Surface Mount Technology) production line and a laser cutting line equipped with a depanelizer. The SMT Production Line The high-speed SMT line comprises several essential components, each fulfilling a unique role in the manufacturing process: 1. PCB Loader: This initial stage involves loading boards onto the production line with utmost care. Our Board Loader prioritizes safety, incorporating various safety light curtains and sensors to promptly halt operations and issue alerts in case of any anomalies. 2. Laser Marking Machine: Every PCB receives a unique two-dimensional code or barcode, facilitating comprehensive traceability. Despite the high-temperature laser process potentially leading to dust accumulation on PCB surfaces, our dedicated PCB Surface Cleaner swiftly addresses this issue. 3. SMT Solder Paste Printer: This stage involves applying solder paste to the boards, a fundamental step in the manufacturing process. 4. SPI (Solder Paste Inspection): Meticulous inspections are conducted at this stage. Boards passing inspection proceed through the NG (No Good) Buffer Conveyor to the module mounters. Conversely, "No Good" results prompt storage of PCBs in the NG Buffer Conveyor, capable of accommodating up to 25 PCBs. Operators can retrieve these NG boards for rework after utilizing our specialized PCB Mis Cleaner to remove solder paste. 5. Module Mounters: These machines excel in attaching small and delicate components, necessitating precision and expertise in the module mounting process. 6. Standard Pick And Place Machines: The selection of these machines is contingent upon your specific BOM (Bill of Materials) list. 7. Pre-Reflow AOI (Automated Optical Inspection): Boards undergo examination for component quality at this stage. Detected issues prompt the Sorting Conveyor to segregate boards for rework. 8. Reflow Oven: Boards undergo reflow soldering, with our Lyra series reflow ovens recommended for their outstanding features, including nitrogen capability, flux recycling, and water cooling function, ensuring impeccable soldering results. 9. Post-Reflow AOI: This stage focuses on examining soldering quality. Detected defects prompt the Sorting Conveyor to segregate boards for further inspection or rework. Any identified defects are efficiently addressed with the BGA rework station, maintaining the highest quality standards. 10. Laser Depanelizer: Boards advance to the laser depanelizer, where precision laser cutting, often employing green light for optimal results, ensures smoke-free, highly accurate separation of boards. 11. PCB Placement Machine: Cut boards are subsequently managed by the PCB Placement Machine, arranging them as required. With this, all high-speed SMT line processes are concluded. Efficiency And Output This production line demonstrates exceptional productivity when manufacturing motherboards with approximately 3000 electronic components, boasting the potential to assemble up to 180 boards within a single hour. Such efficiency not only enhances output but also ensures cost-effectiveness and precision in your manufacturing processes. At I.C.T, we specialize in crafting customized SMT production line solutions tailored to your product and specific requirements. Our equipment complies with European safety standards and holds CE certificates. For inquiries or to explore our exemplary post-sales support, do not hesitate to contact us. The I.C.T team is here to elevate your electronics manufacturing to new heights of efficiency and cost-effectiveness.
Technical Library | 2016-08-24 06:15:35.0
From consumer electronics to systems control, automotive technology to aviation and aerospace – today, electronics are absolutely essential in many sectors. They increasingly replace mechanical components, eliminating wear and tear and thereby extending the service life. What is easily forgotten in this regard is that electronics are also subject to the laws of mechanics. Mechanical test equipment is crucial to test components for the secure hold of welded, soldered or adhesive bonds. A new, mechanically intricate test probe with universal clamping jaws, that can even grasp the individual bonding wires, is in line with the trend toward ever smaller components. Serving as an actuator for these is a micro drive that can be precisely controlled using a miniaturised motion controller to relieve the control unit in the test device.
Technical Library | 2023-12-18 21:07:29.0
Selective soldering utilises a nozzle to apply solder to components on the underside of printed circuit boards (PCBs). This nozzle can be moved to either perform dips (depositing solder to a single component) or draws (applying solder to several components in a single movement). The selective soldering methodology thereby allows the process to be tailored to specific joints and allows multiple nozzle types to be used if required on the circuit board. Nozzles can vary by size (internal diameter) and shape (making them suitable for different process types). This is all dictated by board design and process requirements. Selection of the nozzle type is dependent upon the product to be soldered and the desired cycle time. Examples of different nozzle types are shown here. Hand-load selective systems must be programmed with the parameters for multiple solder joints. However, many in-line systems are designed to be modular. This modularity allows for multiple solder stations with different conditions/nozzles to achieve low cycle times. Figure 1 shows the two distinct types of selective soldering systems offered by Pillarhouse International Ltd.
Technical Library | 2008-02-12 22:52:41.0
Corrosion of solder pots and solder pot components in wave soldering equipment has been reduced with the introduction of corrosion resistant coatings and improved lead free solder alloys. The latest trends in protecting wave solder machine components from liquid metal corrosion by lead free solder alloys will be presented in order to provide guidelines for evaluating existing equipment as well as for purchasing new systems.
Technical Library | 2007-01-03 16:36:58.0
Solder paste dispensing is not a new process. However, today's microelectronics present a daunting array of technical challenges to meet deposit size requirements. The need for better paste formulations, more precise equipment, and more tightly controlled processes is driving paste suppliers and equipment suppliers to develop new methods and materials. The most challenging solder paste deposits are those smaller than 0.25mm in diameter and today’s electronics demand such deposits. This paper addresses the process requirements for solder paste micro-deposits in terms of material, equipment and process variable control required for success in producing 0.25mm and smaller deposits.
Technical Library | 2018-12-19 21:23:59.0
With the rapid trend towards miniaturization in surface mount and MEMs lid-attach technology, it is becoming increasingly challenging to dispense solder paste in ultra-fine dot applications such as those involving chip capacitors or BGA packages, as well as dispensing ultra-fine lines in MEMs lid-attach applications. In order to achieve ultra-fine dots and fine line widths while dispensing solder paste, both the solder material and dispensing equipment need to be optimized. Optimizing the equipment can be very challenging, as there are many input variables that can affect the dispense quality of the solder paste. In this paper we will evaluate the many equipment variables involved in the solder paste dispensing process, and the impact these variables have on the dispense quality of the solder paste.
Technical Library | 2008-08-28 22:50:11.0
The increasing use of lead-free solder has introduced a new set of process parameters when setting up wave solder equipment for effective soldering. Determining the proper flow characteristics of the solder wave for adequate hole fill is an essential step in achieving a reliable process. A variety of solder waves exist in the industry; each with advantages and disadvantages when performing lead-free wave soldering. One way to ensure adequate hole-fill is by increasing contact time at the Chip Wave.
Technical Library | 2003-04-18 12:05:57.0
The popular tin (Sn) rich lead free solders are causing severe corrosion to many of the materials used in today's Wave Solder systems. Users are experiencing higher maintenance frequency and reduced life of wave solder machine components. This paper describes the effects of Sn rich solders in contact with various materials and discusses alternate methods to alleviate this problem.