Technical Library: plated (Page 1 of 7)

Vacuum Fluxless Reflow Technology for Fine Pitch First Level Interconnect Bumping Applications

Technical Library | 2023-01-17 17:58:36.0

Heterogeneous integration has become an important performance enabler as high-performance computing (HPC) demands continue to rise. The focus to enable heterogeneous integration scaling is to push interconnect density limit with increased bandwidth and improved power efficiency. Many different advanced packaging architectures have been deployed to increase I/O wire / area density for higher data bandwidth requirements, and to enable more effective die disaggregation. Embedded Multi-die Interconnect Bridge (EMIB) technology is an advanced, cost-effective approach to in-package high density interconnect of heterogeneous chips, providing high density I/O, and controlled electrical interconnect paths between multiple dice in a package. In emerging architectures, it is required to scale down the EMIB die bump pitch in order to further increase the die-to-die (D2D) communication bandwidth. Aa a result, bump pitch scaling poses significant challenges in the plated solder bump reflow process, e.g., bump height / coplanarity control, solder wicking control, and bump void control. It's crucial to ensure a high-quality solder bump reflow process to meet the final product reliability requirements. In this paper, a combined formic acid based fluxless and vacuum assisted reflow process is developed for fine pitch plated solder bumping application. A high-volume production (HVM) ready tool has been developed for this process.

Heller Industries Inc.

On Oreology, the fracture and flow of "milk's favorite cookie® "

Technical Library | 2024-08-29 18:30:46.0

The mechanical experience of consumption (i.e., feel, softness, and texture) of many foods is intrinsic to their enjoyable consumption, one example being the habit of twisting a sandwich cookie to reveal the cream. Scientifically, sandwich cookies present a paradigmatic model of parallel plate rheometry in which a fluid sample, the cream, is held between two parallel plates, the wafers. When the wafers are counterrotated, the cream deforms, flows, and ultimately fractures, leading to separation of the cookie into two pieces. We introduce Oreology (/Oriːˈɒl@dʒi/), from the Nabisco Oreo for "cookie" and the Greek rheo logia for "flow study," as the study of the flow and fracture of sandwich cookies. Using a laboratory rheometer, we measure failure mechanics of the eponymous Oreo's "creme" and probe the influence of rotation rate, amount of creme, and flavor on the stress–strain curve and postmortem creme distribution. The results typically show adhesive failure, in which nearly all (95%) creme remains on one wafer after failure, and we ascribe this to the production process, as we confirm that the creme-heavy side is uniformly oriented within most of the boxes of Oreos. However, cookies in boxes stored under potentially adverse conditions (higher temperature and humidity) show cohesive failure resulting in the creme dividing between wafer halves after failure. Failure mechanics further classify the creme texture as "mushy." Finally, we introduce and validate the design of an open-source, three-dimensionally printed Oreometer powered by rubber bands and coins for encouraging higher precision home studies to contribute new discoveries to this incipient field of study

1st Place Machinery Inc.

Metal Plating Services

Technical Library | 2024-06-21 20:20:23.0

Explanation of metal plating services and its benefits

A-Laser, Inc.

Keeping Tin Solderable

Technical Library | 1999-05-06 15:31:13.0

Tin plating on a component lead makes its soldering easier. Everybody knows that. Not so well known is that tin plating has shelf life -- its ability to be easily soldered degrades over time. the speed and severity of degradation depends both on storage conditions and on the plating itself...

TE Connectivity

Impact of Assembly Cycles on Copper Wrap Plating

Technical Library | 2020-07-22 19:39:05.0

The PWB industry needs to complete reliability testing in order to define the minimum copper wrap plating thickness requirement for confirming the reliability of PTH structures. Predicting reliability must ensure that the failure mechanism is demonstrated as a wear-out failure mode because a plating wrap failure is unpredictable. The purpose of this study was to quantify the effects of various copper wrap plating thicknesses through IST testing followed by micro sectioning to determine the failure mechanism and identify the minimum copper wrap thickness required for a reliable PWB. Minimum copper wrap plating thickness has become an even a bigger concern since designers started designing HDI products with buried vias, microvias and through filled vias all in one design. PWBs go through multiple plating cycles requiring planarization after each plating cycle to keep the surface copper to a manageable thickness for etching. The companies started a project to study the relationship between Copper wrap plating thickness and via reliability. The project had two phases. This paper will present findings from both Phase 1 and Phase 2.

Firan Technology Group

Advanced Cu Electroplating Process for Any Layer Via Fill Applications with Thin Surface Copper

Technical Library | 2019-06-26 23:21:49.0

Copper-filled micro-vias are a key technology in high density interconnect (HDI) designs that have enabled increasing miniaturization and densification of printed circuit boards for the next generation of electronic products. Compared with standard plated through holes (PTHs) copper filled vias provide greater design flexibility, improved signal performance, and can potentially help reduce layer count, thus reducing cost. Considering these advantages, there are strong incentives to optimize the via filling process. This paper presents an innovative DC acid copper via fill formulation, for VCP (Vertical Continues Plating) applications which rapidly fills vias while minimizing surface plating.

MacDermid Inc.

Via Fill and Through Hole Plating Process with Enhanced TH Microdistribution

Technical Library | 2019-07-17 17:56:34.0

The increased demand for electronic devices in recent years has led to an extensive research in the field to meet the requirements of the industry. Electrolytic copper has been an important technology in the fabrication of PCBs and semiconductors. Aqueous sulfuric acid baths are explored for filling or building up with copper structures like blind micro vias (BMV), trenches, through holes (TH), and pillar bumps. As circuit miniaturization continues, developing a process that simultaneously fills vias and plates TH with various sizes and aspect ratios, while minimizing the surface copper thickness is critical. Filling BMV and plating TH at the same time, presents great difficulties for the PCB manufactures. The conventional copper plating processes that provide good via fill and leveling of the deposit tend to worsen the throwing power (TP) of the electroplating bath. TP is defined as the ratio of the deposit copper thickness in the center of the through hole to its thickness at the surface. In this paper an optimization of recently developed innovative, one step acid copper plating technology for filling vias with a minimal surface thickness and plating through holes is presented.

MacDermid Inc.

Via In Pad - Conductive Fill or Non-Conductive Fill?

Technical Library | 2020-07-15 18:29:34.0

In the early 2000s the first fine-pitch ball grid array devices became popular with designers looking to pack as much horsepower into as small a space as possible. "Smaller is better" became the rule and with that the mechanical drilling world became severely impacted by available drill bit sizes, aspect ratios, and plating methodologies. First of all, the diameter of the drill needed to be in the 0.006" or smaller range due to the reduction of pad size and spacing pitch. Secondly, the aspect ratio (depth to diameter) became limited by drill flute length, positional accuracy, rigidity of the tools (to prevent breakage), and the throwing power of acid copper plating systems. And lastly, the plating needed to close up the hole as much as possible, which led to problems with voiding, incomplete fill, and gas/solution entrapment.

Advanced Circuits

Extending Soldering Iron Tip Life

Technical Library | 1999-05-09 13:05:12.0

This Technical Note discusses the construction of solder tips, the various failure modes associated with tip plating (cracking, wear, corrosion, and dewetting), how to diagnose those failure modes, and specific practices that can be taken to minimize or eliminate each one.

Metcal

Brief description of ENIG for Multilayer PCB

Technical Library | 2013-01-18 02:42:14.0

ENIG (Electroless Nickel/Immersion Gold) is to deposit nickel gold plating which has good solderability, wear resistance , leveling appearance and small electric resistance. It included 4 steps that are pretreatment, immersion nickel, immersion gold and Post treatment...

Everest PCB equipment Co.,Ltd

  1 2 3 4 5 6 7 Next

plated searches for Companies, Equipment, Machines, Suppliers & Information

Sell Used SMT & Test Equipment

High Precision Fluid Dispensers
SMT feeders

High Throughput Reflow Oven
Software for SMT

Best Reflow Oven
PCB Handling Machine with CE

Training online, at your facility, or at one of our worldwide training centers"
SMT spare parts

Low-cost, self-paced, online training on electronics manufacturing fundamentals