Technical Library: reflow oven low cost (Page 1 of 2)

Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer

Technical Library | 2024-02-02 07:48:31.0

Maximizing Efficiency: The High-Speed SMT Line With Laser Depanelizer In today's rapidly evolving electronics manufacturing landscape, optimizing efficiency, cost-effectiveness, and precision remains paramount. Businesses engaged in producing industrial control boards, computer motherboards, mobile phone motherboards, and mining machine boards face ongoing challenges in streamlining production processes. The integration of expensive equipment strains budgets, making the creation of an efficient, cost-effective high-speed SMT line a daunting task. However, a solution exists that seamlessly combines these elements into a singular, high-performance, and cost-effective SMT line. Let's delve into the specifics. A Comprehensive High-Speed SMT Line Our innovative solution amalgamates two pivotal components: a cutting-edge SMT (Surface Mount Technology) production line and a laser cutting line equipped with a depanelizer. The SMT Production Line The high-speed SMT line comprises several essential components, each fulfilling a unique role in the manufacturing process: 1. PCB Loader: This initial stage involves loading boards onto the production line with utmost care. Our Board Loader prioritizes safety, incorporating various safety light curtains and sensors to promptly halt operations and issue alerts in case of any anomalies. 2. Laser Marking Machine: Every PCB receives a unique two-dimensional code or barcode, facilitating comprehensive traceability. Despite the high-temperature laser process potentially leading to dust accumulation on PCB surfaces, our dedicated PCB Surface Cleaner swiftly addresses this issue. 3. SMT Solder Paste Printer: This stage involves applying solder paste to the boards, a fundamental step in the manufacturing process. 4. SPI (Solder Paste Inspection): Meticulous inspections are conducted at this stage. Boards passing inspection proceed through the NG (No Good) Buffer Conveyor to the module mounters. Conversely, "No Good" results prompt storage of PCBs in the NG Buffer Conveyor, capable of accommodating up to 25 PCBs. Operators can retrieve these NG boards for rework after utilizing our specialized PCB Mis Cleaner to remove solder paste. 5. Module Mounters: These machines excel in attaching small and delicate components, necessitating precision and expertise in the module mounting process. 6. Standard Pick And Place Machines: The selection of these machines is contingent upon your specific BOM (Bill of Materials) list. 7. Pre-Reflow AOI (Automated Optical Inspection): Boards undergo examination for component quality at this stage. Detected issues prompt the Sorting Conveyor to segregate boards for rework. 8. Reflow Oven: Boards undergo reflow soldering, with our Lyra series reflow ovens recommended for their outstanding features, including nitrogen capability, flux recycling, and water cooling function, ensuring impeccable soldering results. 9. Post-Reflow AOI: This stage focuses on examining soldering quality. Detected defects prompt the Sorting Conveyor to segregate boards for further inspection or rework. Any identified defects are efficiently addressed with the BGA rework station, maintaining the highest quality standards. 10. Laser Depanelizer: Boards advance to the laser depanelizer, where precision laser cutting, often employing green light for optimal results, ensures smoke-free, highly accurate separation of boards. 11. PCB Placement Machine: Cut boards are subsequently managed by the PCB Placement Machine, arranging them as required. With this, all high-speed SMT line processes are concluded. Efficiency And Output This production line demonstrates exceptional productivity when manufacturing motherboards with approximately 3000 electronic components, boasting the potential to assemble up to 180 boards within a single hour. Such efficiency not only enhances output but also ensures cost-effectiveness and precision in your manufacturing processes. At I.C.T, we specialize in crafting customized SMT production line solutions tailored to your product and specific requirements. Our equipment complies with European safety standards and holds CE certificates. For inquiries or to explore our exemplary post-sales support, do not hesitate to contact us. The I.C.T team is here to elevate your electronics manufacturing to new heights of efficiency and cost-effectiveness.

I.C.T ( Dongguan ICT Technology Co., Ltd. )

SMT Line Improvements for High Mix, Low Volume Electronics Manufacturing

Technical Library | 2011-08-04 19:29:53.0

This work covers two major projects aimed at increasing quality and efficiency on a high mix, low volume surface mount electronics production line. Specifically the installation of a ten zone reflow oven and an enhanced changeover method for SMT pick and

Auburn University

Surface Treatment Enabling Low Temperature Soldering to Aluminum

Technical Library | 2020-07-29 19:58:48.0

The majority of flexible circuits are made by patterning copper metal that is laminated to a flexible substrate, which is usually polyimide film of varying thickness. An increasingly popular method to meet the need for lower cost circuitry is the use of aluminum on Polyester (Al-PET) substrates. This material is gaining popularity and has found wide use in RFID tags, low cost LED lighting and other single-layer circuits. However, both aluminum and PET have their own constraints and require special processing to make finished circuits. Aluminum is not easy to solder components to at low temperatures and PET cannot withstand high temperatures. Soldering to these materials requires either an additional surface treatment or the use of conductive epoxy to attach components. Surface treatment of aluminum includes the likes of Electroless Nickel Immersion Gold plating (ENIG), which is extensive wet-chemistry and cost-prohibitive for mass adoption. Conductive adhesives, including Anisotropic Conductive Paste (ACP), are another alternate to soldering components. These result in component substrate interfaces that are inferior to conventional solders in terms of performance and reliability. An advanced surface treatment technology will be presented that addresses all these constraints. Once applied on Aluminum surfaces using conventional printing techniques such as screen, stencil, etc., it is cured thermally in a convection oven at low temperatures. This surface treatment is non-conductive. To attach a component, a solder bump on the component or solder printed on the treated pad is needed before placing the component. The Aluminum circuit will pass through a reflow oven, as is commonly done in PCB manufacturing. This allows for the formation of a true metal to metal bond between the solder and the aluminum on the pads. This process paves the way for large scale, low cost manufacturing of Al-PET circuits. We will also discuss details of the process used to make functional aluminum circuits, study the resultant solder-aluminum bond, shear results and SEM/ EDS analysis.

Averatek Corporation

Today's Vapor Phase Soldering An Optimized Reflow Technology for Lead Free Soldering

Technical Library | 2014-03-20 12:37:39.0

In the beginning of SMT, Vapor Phase Soldering was the preferred reflow soldering technology because of its excellent heat transfer capabilities. There were also some disadvantages like fast temperature rise, nearly no influence on the temperature profiles and high costs. So the use of Vapor Phase Soldering was reduced to special applications with high mass or complex boards in low numbers (e.g. for military or aerospace use).

IBL - Löttechnik GmbH

Fine Pitch Cu Pillar with Bond on Lead (BOL) Assembly Challenges for High Performance Flip Chip Package

Technical Library | 2018-01-17 22:47:02.0

Fine pitch copper (Cu) Pillar bump has been growing adoption in high performance and low-cost flip chip packages. Higher input/output (I/O) density and very fine pitch requirements are driving very small feature sizes such as small bump on a narrow pad or bond-on-lead (BOL) interconnection, while higher performance requirements are driving increased current densities, thus assembling such packages using a standard mass reflow (MR) process and maintaining its performance is a real and serious challenge. (...) In this study a comprehensive finding on the assembly challenges, package design, and reliability data will be published. Originally published in the SMTA International 2016

STATS ChipPAC Inc

Vapor Phase Technology and its Application

Technical Library | 2013-03-27 23:43:40.0

Vapor phase, once cast to the annals’ of history is making a comeback. Why? Reflow technology is well developed and has served the industry for many years, it is simple and it is consistent. All points are true – when dealing with the centre section of the bell curve. Today’s PCB manufacturers are faced with many designs which no longer fall into that polite category but rather test the process engineering groups with heavier and larger panels, large ground planes located in tricky places, component mass densities which are poorly distributed, ever changing Pb Free alloys and higher process temperatures. All the time the costs for the panels increase, availability of “process trial” boards diminishes and yields are expected to be extremely high with zero scrap rates. The final process in the assembly line has the capacity to secure all the value of the assembly or destroy it. If a panel is poorly soldered due to poor Oven setup or incorrect programming of the profile the recovery of the panel is at best expensive, at worst a loss. For these challenges people are turning to Vapor Phase.

A-Tek Systems Group LLC

Anisotropic grain growth and crack propagation in eutectic microstructure under cyclic temperature annealing in flip-chip SnPb composite solder joints

Technical Library | 2014-06-19 18:13:23.0

For high-density electronic packaging,the application of flip-chip solder joints has been well received in the microelectronics industry. High-lead(Pb) solders such as Sn5Pb95 are presently granted immunity from the RoHS requirements for their use in high-end flip-chip devices, especially in military applications. In flip-chip technology for consumer electronic products, organic substrates have replaced ceramic substrates due to the demand for less weight and low cost. However, the liquidus temperatures of high-Pb solders are over 300°C which would damage organic substrates during reflow because of the low glass transition temperature. To overcome this difficulty, the composite solder approach was developed...

National Chiao Tung University

Common Process Defect Identification of QFN Packages

Technical Library | 2019-07-23 22:33:47.0

The Quad Flat Pack No Leads (QFN) style of leadless packaging [also known as a Land Grid Array (LGA)] is rapidly increasing in us e for wireless, automotive, telecom and many other areas becaus e of its low cost, low stand-off height and excellent thermal and electri cal properties. With the implementation of any new package type, there is always a learning curve for its use in design and processing as well as for the Process and Quality Engineers who have to get to grips with the challenges that these packages bring. Therefore, this paper will provide examples of the common process defects that can be seen with QFNs /LGAs when using optical and x-ray inspection as part of manufacturing quality control. Results of trials conducted on four PCB finishes and using vapour phase and convection reflow will be discussed.

Nordson DAGE

Low Temperature Soldering Using SN-BI Alloys

Technical Library | 2020-04-01 23:32:29.0

Low temperature solder alloys are preferred for the assembly of temperature-sensitive components and substrates. The alloys in this category are required to reflow between 170 and 200oC soldering temperatures. Lower soldering temperatures result in lower thermal stresses and defects, such as warping during assembly, and permit use of lower cost substrates. Sn-Bi alloys have lower melting temperatures, but some of its performance drawbacks can be seen as deterrent for its use in electronics devices.Here we show that non-eutectic Sn-Bi alloys can be used to improve these properties and further align them with the electronics industry specific needs. The physical properties and drop shock performance of various alloys are evaluated, and their results are analysed in terms of the alloy composition, including Bi content and alloying additions.

Alpha Assembly Solutions

A High Thermal Conductive Solderable Adhesive

Technical Library | 2016-11-17 14:37:41.0

With increasing LED development and production, thermal issues are becoming more and more important for LED devices, particularly true for high power LED and also for other high power devices. In order to dissipate the heat from the device efficiently, Au80Sn20 alloy is being used in the industry now. However there are a few drawbacks for Au80Sn20 process: (1) higher soldering temperature, usually higher than 320°C; (2) low process yield; (3) too expensive. In order to overcome the shortcomings of Au80Sn20 process, YINCAE Advanced Materials, LLC has invented a new solderable adhesive – TM 230. Solderable adhesives are epoxy based silver adhesives. During the die attach reflow process, the solder material on silver can solder silver together, and die with pad together. After soldering, epoxy can encapsulate the soldered interface, so that the thermal conductivity can be as high as 58 W/mk. In comparison to Au80Sn20 reflow process, the solderable adhesive has the following advantages: (1) low process temperature – reflow peak temperature of 230°C; (2) high process yield – mass reflow process instead of thermal compression bonding process; (3) low cost ownership. In this paper we are going to present the die attach process of solderable adhesive and the reliability test. After 1000 h lighting of LED, it has been found that there is almost no decay in the light intensity by using solderable adhesive – TM 230.

YINCAE Advanced Materials, LLC.

  1 2 Next

reflow oven low cost searches for Companies, Equipment, Machines, Suppliers & Information