Technical Library | 2020-04-22 23:50:30.0
Flexible bioelectronics, including wearable and implantable electronics, have revolutionized the way of human-machine interaction due to the fact that they can provide natural and seamless interactions with humans and keep stable and durable at strained states. As sensor elements or biomimetic actuators, flexible bioelectronics can dynamically sense and monitor physiological signals, reveal real-time physical health information and provide timely precise stimulations or treatments. Thus, the flexible bioelectronics are playing increasingly important roles in human-health monitoring and disease treatment, which will significantly change the future of healthcare as well as our relationships with electronics. This review summarizes recent major progress in the development of flexible substrates or encapsulation materials, sensors, circuits and energy-autonomous powers toward digital healthcare monitoring, emphasizing its role in biomedical applications in vivo and problems in practical applications. A future perspective into the challenges and opportunities in emerging flexible bioelectronics designs for the next-generation healthcare monitoring systems is also presented.
Technical Library | 2021-08-04 18:36:17.0
In this paper, the existing status of PCB manufacturing environment and future development towards smart manufacturing system (SMS) are discussed. A cloud manufacturing system (CMS) paradigm is introduced in the existing PCB manufacturing environment to get easy access to resources, materials, manufacturing processes, planning problems and data sharing networks. The goal is to integrate the information sharing from planning problems, PCB assembly lines, retailer and shipment department to CMS for smart planning decisions to cope with the increasing demand and profit enhancement strategies. A conceptual framework is presented to introduce the smart manufacturing environment in the traditional PCB manufacturing system. The suggested framework of SMS helps to improve the performance of PCB manufacturing industries regarding smart planning and scheduling, intelligent monitoring of smart assembly lines for efficiency and production enhancement.
Technical Library | 2017-04-06 16:50:56.0
Silicon photonics is an IC technology where data is transferred using light that is routed on the chip using optical waveguides (Figure 1). Silicon photonics is best known as a method to solve problems with high input/output bandwidth applications. For example, because of ever-growing bandwidth requirements in datacenters, the optical transmit and receive heads are being placed closer and closer to the board and the IC. But, designers also apply this technology to biosensors, medical diagnostics, and environmental monitoring. Regardless of the application, photonic ICs always need integration to electronic circuits and this results in unique challenges.
Technical Library | 2013-08-13 09:49:53.0
One of the common issues I’ve noticed when visiting shops that use crimp force monitors (CFMs) is that the CFMs are usually turned off, regardless of the brand, because engineers and operators are not using them properly. Why, with all of their benefits, are CFMs not being used regularly by employees? One of the biggest problems is the lack of understanding of the variables affecting the CFM’s ability to detect variations. Crimp quality detection is similar to baking a cake. There are a lot of ingredients and if one ingredient is missing or of bad quality, you likely are not going to achieve your desired result. This article will go back through the basics of a crimp quality detection system and discuss what ingredients or variables you need to consider before switching off that CFM.
Technical Library | 2020-03-04 23:53:17.0
Critical to maintaining quality control in high-throughput screening is the need for constant monitoring of liquid-dispensing fidelity. Traditional methods involve operator intervention with gravimetric analysis to monitor the gross accuracy of full plate dispenses, visual verification of contents, or dedicated weigh stations on screening platforms that introduce potential bottlenecks and increase the plate-processing cycle time. We present a unique solution using open-source hardware, software, and 3D printing to automate dispenser accuracy determination by providing real-time dispense weight measurements via a network-connected precision balance. This system uses an Arduino microcontroller to connect a precision balance to a local network. By integrating the precision balance as an Internet of Things (IoT) device, it gains the ability to provide real-time gravimetric summaries of dispensing, generate timely alerts when problems are detected, and capture historical dispensing data for future analysis. All collected data can then be accessed via a web interface for reviewing alerts and dispensing information in real time or remotely for timely intervention of dispense errors. The development of this system also leveraged 3D printing to rapidly prototype sensor brackets, mounting solutions, and component enclosures.
Technical Library | 2020-11-04 17:57:41.0
Residues present on circuit boards can cause leakage currents if not controlled and monitored. How "Clean is Clean" is neither easy nor cheap to determine. Most OEMs use analytical methods to assess the risk of harmful residues. The levels that can be associated with clean or dirty are typically determined based on the exposed environment where the part will be deployed. What is acceptably clean for one segment of the industry may be unacceptable for more demanding segments. As circuit assemblies increase in density, understanding cleanliness data becomes more challenging. The risk of premature failure or improper function is typically site specific. The problem is that most do not know how to measure or define cleanliness nor can they recognize process problems related to residues. A new site specific method has been designed to run performance qualifications on boards built with specific soldering materials, reflow settings and cleaning methods. High impedance measurements are performed on break off coupons designed with components geometries used to build the assembly. The test method provides a gauge of potential contamination sources coming from the assembly process that can contribute to electrochemical migration.
Technical Library | 2023-04-17 21:17:59.0
The purpose of this paper is to evaluate and compare the effectiveness and sensitivity of different cleanliness verification tests for post soldered printed circuit board assemblies (PCBAs) to provide an understanding of current industry practice for ionic contamination detection limits. Design/methodology/approach – PCBAs were subjected to different flux residue cleaning dwell times and cleanliness levels were verified with resistivity of solvent extract, critical cleanliness control (C3) test, and ion chromatography analyses to provide results capable of differentiating different sensitivity levels for each test. Findings – This study provides an understanding of current industry practice for ionic contamination detection using verification tests with different detection sensitivity levels. Some of the available cleanliness monitoring systems, particularly at critical areas of circuitry that are prone to product failure and residue entrapment, may have been overlooked. Research limitations/implications – Only Sn/Pb, clean type flux residue was evaluated. Thus, the current study was not an all encompassing project that is representative of other chemistry-based flux residues. Practical implications – The paper provides a reference that can be used to determine the most suitable and effective verification test for the detection of ionic contamination on PCBAs. Originality/value – Flux residue-related problems have long existed in the industry. The findings presented in this paper give a basic understanding to PCBA manufacturers when they are trying to choose the most suitable and effective verification test for the detection of ionic contamination on their products. Hence, the negative impact of flux residue on the respective product's long-term reliability and performance can be minimized and monitored effectively.
Technical Library | 2016-04-14 13:49:44.0
A system level test, usually built-in test (BIT), determines that one or more subsystems are faulty. These subsystems sent to the depot or factory repair facility, called units under test (UUTs) often pass that test, an event we call No-Fault-Found (NFF). With more-and more electronics monitored by BIT, it is more likely that an intermittent glitch will trigger a call for a maintenance action resulting in NFF. NFFs are often confused with false alarm (FA), cannot duplicate (CNDs)or retest OK (RTOK) events. NFFs at the depot are caused by FAs, CNDs, RTOKs as well as a number of other complications. Attempting to repair NFF scan waste precious resources, compromise confidence in the product, create customer dissatisfaction, and the repair quality remains a mystery. The problem is compounded by previous work showing that most failure indications calling for repair action at the system level are invalid. NFFs can be caused by real failures or may be a result of system level false alarms. Understanding the cause of the problem may help us distinguish between units under test (UUTs) that we can repair and those that we cannot. In calculating the true cost of repair we must account for wasted effort in attempting to repair unrepairable UUTs.This paper will shed some light on this trade-off. Finally, we will explore approaches for dealing with the NFF issue in a cost effective manner.
| 1 |