Technical Library: shine of solder joint (Page 1 of 6)

Effect of Reflow Profile on SnPb and SnAgCu Solder Joint Shear Force

Technical Library | 2023-01-17 17:27:13.0

Reflow profile has significant impact on solder joint performance because it influences wetting and microstructure of the solder joint. The degree of wetting, the microstructure (in particular the intermetallic layer), and the inherent strength of the solder all factor into the reliability of the solder joint. This paper presents experimental results on the effect of reflow profile on both 63%Sn 37%Pb (SnPb) and 96.5%Sn 3.0%Ag 0.5%Cu (SAC 305) solder joint shear force. Specifically, the effect of the reflow peak temperature and time above solder liquidus temperature are studied. Nine reflow profiles for SAC 305 and nine reflow profiles for SnPb have been developed with three levels of peak temperature (230 o C, 240 o C, and 250 o C for SAC 305; and 195 o C, 205 o C, and 215 o C for SnPb) and three levels of time above solder liquidus temperature (30 sec., 60 sec., and 90 sec.). The shear force data of four different sizes of chip resistors (1206, 0805, 0603, and 0402) are compared across the different profiles. The shear force of the resistors is measured at time 0 (right after assembly). The fracture surfaces have been studied using a scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS)

Heller Industries Inc.

The Future of Solder Joint Encapsulant

Technical Library | 2016-01-08 11:56:03.0

Solder joint encapsulant adhesives have been successfully used to enhance the strength of solder joints and improve thermal cycling as well as drop performance in finished products. The use of solder joint encapsulant adhesives can eliminate the need for underfill materials and the underfill process altogether, thus simplifying rework, which results in a lower cost of ownership.Solder joint encapsulant adhesives include: low temperature and high temperature solder joint encapsulant adhesives, and their derivatives. Each solder joint encapsulant adhesive has: unfilled and filled solder joint encapsulant adhesives, and solder joint encapsulant paste. Each solder joint encapsulant product has been designed for different applications. In this paper, we are going to discuss the details and future of solder joint encapsulant adhesives.

YINCAE Advanced Materials, LLC.

Drop Shock Reliability of Lead-Free Alloys - Effect of Micro-Additives

Technical Library | 2009-06-11 19:27:21.0

The shock reliability of solder joints has become a major issue for the electronic industry partly because of the ever increasing popularity of portable electronics and partly due the transition to lead free solders.

Cookson Electronics

Effect of Reflow Profile on SnPb and SnAgCu Solder Joint Shear Force

Technical Library | 2007-03-08 19:31:10.0

Reflow profile has significant impact on solder joint performance because it influences wetting and microstructure of the solder joint. The degree of wetting, the microstructure (in particular the intermetallic layer), and the inherent strength of the solder all factor into the reliability of the solder joint. This paper presents experimental results on the effect of reflow profile on both 63%Sn 37%Pb (SnPb) and 96.5%Sn 3.0%Ag 0.5%Cu (SAC 305) solder joint shear force.

Henkel Electronic Materials

Accurately Capturing System-Level Failure of Solder Joints

Technical Library | 2020-02-05 18:20:06.0

Consortium Projects - Thermal Cycling Reliability Consortium projects allow for joint research to investigate the reliability of multiple solder alloys under a variety of environmental stress conditions. Project jointly sponsored by iNEMI and HDP User Group and including CALCE and Universal consortium currently assessing 15 third-generation solder alloys..

DfR Solutions (acquired by ANSYS Inc)

Analysis of the Mechanical Behavior, Microstructure, and Reliability of Mixed Formulation Solder Joints

Technical Library | 2023-09-26 19:14:44.0

The transition from tin-lead to lead free soldering in the electronics manufacturing industry has been in progress for the past 10 years. In the interim period before lead free assemblies are uniformly accepted, mixed formulation solder joints are becoming commonplace in electronic assemblies. For example, area array components (BGA/CSP) are frequently available only with lead free Sn-Ag-Cu (SAC) solder balls. Such parts are often assembled to printed circuit boards using traditional 63Sn-37Pb solder paste. The resulting solder joints contain unusual quaternary alloys of Sn, Ag, Cu, and Pb. In addition, the alloy composition can vary across the solder joint based on the paste to ball solder volumes and the reflow profile utilized. The mechanical and physical properties of such Sn-Ag-Cu-Pb alloys have not been explored extensively in the literature. In addition, the reliability of mixed formulation solder joints is poorly understood.

Auburn University

Reliability Study of Bottom Terminated Components

Technical Library | 2015-07-14 13:19:10.0

Bottom terminated components (BTC) are leadless components where terminations are protectively plated on the underside of the package. They are all slightly different and have different names, such as QFN (quad flat no lead), DFN (dual flat no lead), LGA (land grid array) and MLF (micro lead-frame. BTC assembly has increased rapidly in recent years. This type of package is attractive due to its low cost and good performance like improved signal speeds and enhanced thermal performance. However, bottom terminated components do not have any leads to absorb the stress and strain on the solder joints. It relies on the correct amount of solder deposited during the assembly process for having a good solder joint quality and reliable reliability. Voiding is typically seen on the BTC solder joint, especially on the thermal pad of the component. Voiding creates a major concern on BTC component’s solder joint reliability. There is no current industry standard on the voiding criteria for bottom terminated component. The impact of voiding on solder joint reliability and the impact of voiding on the heat transfer characteristics at BTC component are not well understood. This paper will present some data to address these concerns.

Flex (Flextronics International)

Low Cycle Fatigue Behaviour of Multi-joint Sample in Mechanical Testing

Technical Library | 2013-03-21 21:24:49.0

This paper explores the behaviour of a copper test vehicle with multiple reflowed solder joints, which has direct relevance to ball grid arrays (BGA) and high density interconnect structures. The paper explores the relative stress conditions on the distributed joints and the sensitivity to ball joint shape... First published in the 2012 IPC APEX EXPO technical conference proceedings

National Physical Laboratory

Fragility of Pb-free Solder Joints

Technical Library | 2007-04-18 19:23:22.0

Recent investigations have revealed that Pb-free solder joints may be fragile, prone to premature interfacial failure particularly under shock loading, as initially formed or tend to become so under moderate thermal aging. Depending on the solder pad surface finish, different mechanisms are clearly involved, but none of the commonly used surface finishes appear to be consistently immune to embrittlement processes. This is of obvious concern for products facing relatively high operating temperatures for protracted times and/or mechanical shock or strong vibrations in service.

Universal Instruments Corporation

HALT Testing of Backward Soldered BGAs on a Military Product

Technical Library | 2015-11-19 18:15:07.0

The move to lead free (Pb-free) electronics by the commercial industry has resulted in an increasing number of ball grid array components (BGAs) which are only available with Pb-free solder balls. The reliability of these devices is not well established when assembled using a standard tin-lead (SnPb) solder paste and reflow profile, known as a backward compatible process. Previous studies in processing mixed alloy solder joints have demonstrated the importance of using a reflow temperature high enough to achieve complete mixing of the SnPb solder paste with the Pb-free solder ball. Research has indicated that complete mixing can occur below the melting point of the Pb-free alloy and is dependent on a number of factors including solder ball composition, solder ball to solder paste ratio, and peak reflow times and temperatures. Increasing the lead content in the system enables full mixing of the solder joint with a reduced peak reflow temperature, however, previous research is conflicting regarding the effect that lead percentage has on solder joint reliability in this mixed alloy solder joint.

Lockheed Martin Corporation

  1 2 3 4 5 6 Next

shine of solder joint searches for Companies, Equipment, Machines, Suppliers & Information

2024 Eptac IPC Certification Training Schedule

High Throughput Reflow Oven
Selective Soldering Nozzles

Training online, at your facility, or at one of our worldwide training centers"
SMT Machines

World's Best Reflow Oven Customizable for Unique Applications
Electronics Equipment Consignment

Nozzles, Feeders, Spare Parts - Siemens, Fuji, Juki, Yamaha, etc...
SMT spare parts

Training online, at your facility, or at one of our worldwide training centers"