Technical Library | 2007-11-15 15:54:44.0
At the contractor level once a product is required to be soldered with lead-free solders all the processes must be assessed as to insure the same quality a customer has been accustomed to with a Sn63Pb37 process is achieved. The reflow, wave soldering and hand assembly processes must all be optimized carefully to insure good joint formation as per the appropriate class of electronics with new solder alloys and often new fluxes.
Technical Library | 2008-08-28 22:50:11.0
The increasing use of lead-free solder has introduced a new set of process parameters when setting up wave solder equipment for effective soldering. Determining the proper flow characteristics of the solder wave for adequate hole fill is an essential step in achieving a reliable process. A variety of solder waves exist in the industry; each with advantages and disadvantages when performing lead-free wave soldering. One way to ensure adequate hole-fill is by increasing contact time at the Chip Wave.
Technical Library | 2008-01-24 16:19:43.0
The wave solder process is characterized by a large number of process parameters. To understand them all and their interactions is challenging, particularly when it comes to lead-free soldering. Wave soldering has a number of sub-processes, which include fluxing, preheating, soldering and cooling.
Technical Library | 2020-03-01 23:06:45.0
For though hole soldering, no matter it's wave soldering or selective soldering, the process is same formed by fluxing,preheating,soldering. How these 3 process will change the soldering result? When you face the soldering defects, what could be the reasons caused these and how to debug them? With below information you may get some hints.
Technical Library | 2016-12-29 15:37:51.0
The reliabilities of the flux residue of electronic assemblies and semiconductor packages are attracting more and more attention with the adoption of no-clean fluxes by majority of the industry. In recent years, the concern of "partially activated" flux residue and their influence on reliability have been significantly raised due to the miniaturization along with high density design trend, selective soldering process adoption, and the expanded use of pallets in wave soldering process. When flux residue becomes trapped under low stand-off devices, pallets or unsoldered areas (e.g. selective process), it may contain unevaporated solvent, "live" activators and metal complex intermediates with different chemical composition and concentration levels depending on the thermal profiles. These partially-activated residues can directly impact the corrosion, surface insulation and electrochemical migration of the final assembly. In this study, a few application tests were developed internally to understand this issue. Two traditional liquid flux and two newly developed fluxes were selected to build up the basic models. The preliminary results also provide a scientific approach to design highly reliable products with the goal to minimize the reliability risk for the complex PCB designs and assembly processes. This paper was originally published by SMTA in the Proceedings of SMTA International
Technical Library | 2009-01-15 00:42:58.0
Tin-silver-copper has received much publicity in recent years as the lead-free solder of choice. SAC305 was endorsed by the IPC Solder Value Product Council in the United States as the preferred option for SMT assembly; most assemblers have transitioned to this alloy for their solder paste requirements. The SAC305 alloy due to its 3.0% content of silver is expensive when compared to traditional 63/37 for this reason many wave assemblers are opting for less costly options such as tin-copper based solders for their wave, selective and dip tinning operations.
Technical Library | 2024-06-23 22:03:59.0
The melting temperatures of most lead-free solder alloys are somewhat higher than that of eutectic Sn/Pb solder, and many of the alloys tend to wet typical contact pads less readily. This tends to narrow down the fluxing and mass reflow process windows for assembly onto typical organic substrates and may enhance requirements on placement accuracy. Flip chip assembly here poses some unique challenges. The small dimensions provide for particular sensitivities to wetting and solder joint collapse, and underfilling does not reduce the demands on the intermetallic bond strength. Rather, the need to underfill lead to additional concerns in terms of underfill process control and reliability. Relatively little can here be learned from work on regular SMT components, BGAs or CSPs.
Technical Library | 2017-03-22 20:58:08.0
Water soluble lead-free solder paste is widely used in today’s SMT processes, but the industry is slowly moving away from water soluble solder pastes in favor of no-clean solder pastes. This shift in usage of solder paste is driven by an effort to eliminate the water wash process. Some components cannot tolerate water wash and elimination of water washing streamlines the SMT process. Despite this shift, certain applications lend themselves to the use of water soluble solder paste.This paper details the research and development of a new water soluble lead-free solder paste which improves on the performance characteristics of existing technologies.
Technical Library | 2008-01-24 21:42:39.0
Although many through-hole components are being replaced by their surface mount (SMT) counterparts, printed circuit boards (PCBs) are still being designed with both types of components. Often, there are interconnect hardware, displays, or other components that cannot withstand the exposure to the high temperature involved in the wave soldering process. They are generally soldered by hand. The challenge is to determine the optimal method manufacturers can use to solder these boards populated with mixed technology.
Technical Library | 2018-09-26 20:33:26.0
Bottom terminated components, or BTCs, have been rapidly incorporated into PCB designs because of their low cost, small footprint and overall reliability. The combination of leadless terminations with underside ground/thermal pads have presented a multitude of challenges to PCB assemblers, including tilting, poor solder fillet formation, difficult inspection and – most notably – center pad voiding. Voids in large SMT solder joints can be difficult to predict and control due to the variety of input variables that can influence their formation. Solder paste chemistries, PCB final finishes, and reflow profiles and atmospheres have all been scrutinized, and their effects well documented. Additionally, many of the published center pad voiding studies have focused on optimizing center pad footprint and stencil aperture designs. This study focuses on I/O pad stencil modifications rather than center pad modifications. It shows a no-cost, easily implemented I/O design guideline that can be deployed to consistently and repeatedly reduce void formation on BTC-style packages.
COT specializes in high quality SMT nozzles and consumables for pick and place machines. We provide special engineering design service of custom nozzles for those unique and odd components.
2481 Hilton Drive
Gainesville, GA USA
Phone: (770) 538-0411