Technical Library: sn pb ag (Page 1 of 8)

Effect of Reflow Profile on SnPb and SnAgCu Solder Joint Shear Force

Technical Library | 2023-01-17 17:27:13.0

Reflow profile has significant impact on solder joint performance because it influences wetting and microstructure of the solder joint. The degree of wetting, the microstructure (in particular the intermetallic layer), and the inherent strength of the solder all factor into the reliability of the solder joint. This paper presents experimental results on the effect of reflow profile on both 63%Sn 37%Pb (SnPb) and 96.5%Sn 3.0%Ag 0.5%Cu (SAC 305) solder joint shear force. Specifically, the effect of the reflow peak temperature and time above solder liquidus temperature are studied. Nine reflow profiles for SAC 305 and nine reflow profiles for SnPb have been developed with three levels of peak temperature (230 o C, 240 o C, and 250 o C for SAC 305; and 195 o C, 205 o C, and 215 o C for SnPb) and three levels of time above solder liquidus temperature (30 sec., 60 sec., and 90 sec.). The shear force data of four different sizes of chip resistors (1206, 0805, 0603, and 0402) are compared across the different profiles. The shear force of the resistors is measured at time 0 (right after assembly). The fracture surfaces have been studied using a scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS)

Heller Industries Inc.

Tin Whiskers: Risks with Lead Free | Part I

Technical Library | 2019-06-19 11:06:46.0

Tin (Sn) metal displays the characteristic of growing “tin whiskers” from pure tin coatings (most actively on relatively thin, electrodeposited or immersion tin coatings), usually months or years from the initial deposition of the tin. Tin whiskers are electrically conductive, filamentary, single crystals of white (beta phase) tin. These filaments of single crystal tin are usually one to five microns in diameter, and a few microns up to several tens of millimeters long, that grow spontaneously from the tin coatings. Alloying additions of several percent (by weight) of lead (Pb) prevents these electrically conductive tin whiskers from growing. Pb alloyed into the Sn was discovered to prevent the occurrence of tin whiskers in electronic assemblies in the 1950s as the Bell Laboratories solution to the problem of tin whiskers. The alloying of the tin with lead has thus quietly averted incalculable losses from short circuits in electronic equipment for the last 60 years.

ACI Technologies, Inc.

Investigation of PCB Failure after SMT Manufacturing Process

Technical Library | 2019-10-21 09:58:50.0

An ACI Technologies customer inquired regarding printed circuit board(PCB) failures that were becoming increasingly prevalent after the SMT (surface mount technology) manufacturing process. The failures were detected by electrical testing, but were undetermined as to the location and specific devices causing the failures. The failures were suspected to be caused predominately in the BGA (ball grid array) devices located on specific sites on this 16 layer construction. Information that was provided on the nature of the failures (i.e., opens or shorts) included high resistance shorts that were occurring in those specified areas. The surface finish was a eutectic HASL (hot air solder leveling) and the solder paste used was a water soluble Sn/Pb(tin/lead).

ACI Technologies, Inc.

Alternative Pb-Free Alloys

Technical Library | 2011-08-25 17:47:23.0

While SnAgCu (SAC) alloys still dominate Pb-free selection in North America, especially Sn3.0Ag0.5Cu (SAC305), there are alternative material systems available. Any OEM that is concerned about the high reflow temperatures of SAC or relies on ODM, it is im

DfR Solutions

Effect of Reflow Profile on SnPb and SnAgCu Solder Joint Shear Force

Technical Library | 2007-03-08 19:31:10.0

Reflow profile has significant impact on solder joint performance because it influences wetting and microstructure of the solder joint. The degree of wetting, the microstructure (in particular the intermetallic layer), and the inherent strength of the solder all factor into the reliability of the solder joint. This paper presents experimental results on the effect of reflow profile on both 63%Sn 37%Pb (SnPb) and 96.5%Sn 3.0%Ag 0.5%Cu (SAC 305) solder joint shear force.

Henkel Electronic Materials

Analysis of the Mechanical Behavior, Microstructure, and Reliability of Mixed Formulation Solder Joints

Technical Library | 2023-09-26 19:14:44.0

The transition from tin-lead to lead free soldering in the electronics manufacturing industry has been in progress for the past 10 years. In the interim period before lead free assemblies are uniformly accepted, mixed formulation solder joints are becoming commonplace in electronic assemblies. For example, area array components (BGA/CSP) are frequently available only with lead free Sn-Ag-Cu (SAC) solder balls. Such parts are often assembled to printed circuit boards using traditional 63Sn-37Pb solder paste. The resulting solder joints contain unusual quaternary alloys of Sn, Ag, Cu, and Pb. In addition, the alloy composition can vary across the solder joint based on the paste to ball solder volumes and the reflow profile utilized. The mechanical and physical properties of such Sn-Ag-Cu-Pb alloys have not been explored extensively in the literature. In addition, the reliability of mixed formulation solder joints is poorly understood.

Auburn University

Corrosion Resistance of Pb-Free and Novel Nano-Composite Solders in Electronic Packaging

Technical Library | 2013-10-17 17:46:01.0

Although several commercial and experimental Pb-free solder alloys are available as replacements for Sn-Pb solders, the following families of solders are of particular interest and are the prevailing choices of industry: eutectic Sn-Ag, eutectic Sn-Cu, eutectic Sn-Zn, eutectic Bi-Sn, and Sn–In. Since the properties of the binary Pb-free solders cannot fully meet the requirements for applications in electronic packaging, additional alloying elements are added to improve the performance of these alloys. Thus, ternary and even quaternary Pb-free solders have been developed, such as Sn-Ag-Cu, Sn-Ag-Bi, and Sn-Zn-Bi solder...

National Pingtung University of Science & Technology

An investigation into low temperature tin-bismuth and tin-bismuth-silver lead-free alloy solder pastes for electronics manufacturing applications

Technical Library | 2013-01-24 19:16:35.0

The electronics industry has mainly adopted the higher melting point Sn3Ag0.5Cu solder alloys for lead-free reflow soldering applications. For applications where temperature sensitive components and boards are used this has created a need to develop low melting point lead-free alloy solder pastes. Tin-bismuth and tin-bismuth-silver containing alloys were used to address the temperature issue with development done on Sn58Bi, Sn57.6Bi0.4Ag, Sn57Bi1Ag lead-free solder alloy pastes. Investigations included paste printing studies, reflow and wetting analysis on different substrates and board surface finishes and head-in-pillow paste performance in addition to paste-in-hole reflow tests. Voiding was also investigated on tin-bismuth and tin-bismuth-silver versus Sn3Ag0.5Cu soldered QFN/MLF/BTC components. Mechanical bond strength testing was also done comparing Sn58Bi, Sn37Pb and Sn3Ag0.5Cu soldered components. The results of the work are reported.

Christopher Associates Inc.

Analysis of Laminate Material Properties for Correlation to Pad Cratering

Technical Library | 2016-10-20 18:13:34.0

Pad cratering failure has emerged due to the transition from traditional SnPb to SnAgCu alloys in soldering of printed circuit assemblies. Pb-free-compatible laminate materials in the printed circuit board tend to fracture under ball grid array pads when subjected to high strain mechanical loads. In this study, two Pb-free-compatible laminates were tested, plus one dicycure non-Pb-free-compatible as control. One set of these samples were as-received and another was subjected to five reflows. It is assumed that mechanical properties of different materials have an influence on the susceptibility of laminates to fracture. However, the pad cratering phenomenon occurs at the layer of resin between the exterior copper and the first glass in the weave. Bulk mechanical properties have not been a good indicator of pad crater susceptibility. In this study, mechanical characterization of hardness and Young’s modulus was carried out in the critical area where pad cratering occurs using nano-indentation at the surface and in a cross-section. The measurements show higher modulus and hardness in the Pb-free compatible laminates than in the dicy-cured laminate. Few changes are seen after reflow – which is known to have an effect -- indicating that these properties do not provide a complete prediction. Measurements of the copper pad showed significant material property changes after reflow.

CALCE Center for Advanced Life Cycle Engineering

Effects Of Storage Environments On The Solderability Of Nickel Palladium- Gold Finish With Pb-Based And Pb- Free Solders

Technical Library | 2022-03-02 21:26:51.0

The solderability of a nickel-palladium-gold (Ni-Pd-Au) finish on a Cu substrate was evaluated for the Pb-free solder, 95.5Sn-3.9Ag-0.6 Cu (wt.%, abbreviated Sn-Ag-Cu) and the eutectic 63Sn-37 Pb (Sn-Pb) alloy. The solder temperature was 245ºC. The flux was a rosin-based mildly activated (RMA) solution. The Ni-Pd-Au finish was tested in the as-fabricated condition as well as after exposure to one of the following accelerated storage (shelf life) regiments: (1) 33.6, 67.2, or 336 hours in the Battelle Class 2 flowing gas environment or (2) 5, 16, or 24 hours of steam aging (88ºC, 90%RH).

Sandia National Laboratories

  1 2 3 4 5 6 7 8 Next

sn pb ag searches for Companies, Equipment, Machines, Suppliers & Information