Technical Library: solder paste inspction parameters (Page 1 of 2)

Study of the Rheological Behaviors of Solder Pastes

Technical Library | 2018-11-06 12:42:25.0

Solder paste is a homogeneous, stable suspension of solder powder particles suspended in a flux binder, and is one of the most important process materials today in surface mount technology (SMT). By varying the solder particle size, distribution and shape, as well as the other constituent materials, the rheology and printing performance of solder pastes can be controlled. Paste flow behavior is very important in defining the printing performance of any paste.The purpose of this paper is to study the rheological behavior of SAC (Sn-Ag-Cu) solder paste used for surface mount applications in the electronic industry. The reason why the rheological tests are presented in this paper are two critical sub-processes: aperture filling and paste withdraw. In this paper, we report on the investigation of the rheological profiles, the serrated cone-to-plate system was found as effective in parameter minimizing the wall-slip effect

Technical University of Košice

Board Design and Assembly Process Evaluation for 0201 Components on PCBs

Technical Library | 2023-05-02 19:06:43.0

As 0402 has become a common package for printed circuit board (PCB) assembly, research and development on mounting 0201 components is emerging as an important topic in the field of surface mount technology for PWB miniaturization. In this study, a test vehicle for 0201 packages was designed to investigate board design and assembly issues. Design of Experiment (DOE) was utilized, using the test vehicle, to explore the influence of key parameters in pad design, printing, pick-andplace, and reflow on the assembly process. These key parameters include printing parameters, mounting height or placement pressure, reflow ramping rate, soak time and peak temperature. The pad designs consist of rectangular pad shape, round pad shape and home-based pad shape. For each pad design, several different aperture openings on the stencil were included. The performance parameters from this experiment include solder paste height, solder paste volume and the number of post-reflow defects. By analyzing the DOE results, optimized pad designs and assembly process parameters were determined.

Flextronics International

Pin in Paste Stencil Design for Notebook Mainboard

Technical Library | 2008-03-18 12:36:31.0

This paper examines the construction of a notebook mainboard with more than 2000 components and no wave soldering required. The board contains standard SMD, chipset BGAs, connectors, through hole components and odd forms placed using full automation and soldered after two reflow cycles under critical process parameters. However, state of the art technology does not help if the process parameters are not set carefully. Can all complex BGAs, THTs and even screws be soldered on a single stencil? What will help us overcome bridging, insufficient solder and thombstoning issues? This paper will demonstrate the placement of all odd shape components using pin-in-paste stencil design and full completion of the motherboard after two reflow cycles.

Vestel Electronic

Solder Paste Measurement: A Yield Improvement Strategy That Helps Improve Profits

Technical Library | 2001-05-03 11:23:09.0

In this age of global competition, world class electronics manufacturers understand that increasing profit margins is accomplished not by increasing price or lowering the quality of components and workmanship, but by increasing production yields. Post-solder inspection ensures that your customers receive good product, but by separating the good boards from the bad boards you only measure yield, not improve it. A yield (and profit) improvement strategy consists of making measurements at critical stages, as early as possible in the assembly process, and adjusting the process parameters to achieve optimal performance.

ASC International

Effect Of Vacuum Reflow On Solder Joint Voiding In Bumped Components

Technical Library | 2022-10-31 18:35:40.0

Voids affect the thermal characteristics and mechanical properties of a solder joint, thereby affecting the reliability of the solder interconnect. The automotive sector in particular is requiring the mitigation of solder voids in various electronic control modules to the minimum possible level. Earlier research efforts performed to decrease voids involved varying the reflow profile, paste deposit, paste alloy composition, stencil aperture, and thickness. Due to the various advantages they offer, the use of Ball Grid Array packages is common across all industry sectors. They are also prone to process voiding issues. This study was performed to determine if vacuum assisted reflow process can help alleviate the voids in area array solder joints. Test parameters in this study largely focused on vacuum pressure level and vacuum dwell time.

Auburn University

Solder Paste Stencil Design for Optimal QFN Yield and Reliability

Technical Library | 2015-06-11 21:20:29.0

The use of bottom terminated components (BTC) has become widespread, specifically the use of Quad Flat No-lead (QFN) packages. The small outline and low height of this package type, improved electrical and thermal performance relative to older packaging technology, and low cost make the QFN/BTC attractive for many applications.Over the past 15 years, the implementation of the QFN/BTC package has garnered a great amount of attention due to the assembly and inspection process challenges associated with the package. The difference in solder application parameters between the center pad and the perimeter pads complicates stencil design, and must be given special attention to balance the dissimilar requirements

Lockheed Martin Corporation

Fill the Void V - Mitigation of Voiding for Bottom Terminated Components

Technical Library | 2020-12-29 20:55:46.0

Voiding in solder joints has been studied extensively, and the effects of many variables compared and contrasted with respect to voiding performance. Solder paste flux, solder powder size, stencil design, circuit board design, via-in-pad design, surface finish, component size, reflow profile, vacuum reflow, nitrogen reflow and other parameters have been varied and voiding quantified for each. The results show some differences in voiding performance with respect to most of these variables but these variables are not independent of each other. Voiding in solder joints is a complex issue that often requires multiple approaches to reduce voiding below required limits. This paper focuses on solutions to voiding for commonly used bottom terminated components (BTCs).

FCT ASSEMBLY, INC.

Cleaning Flux Residue under Leadless Components using Objective Evidence to Determine Cleaning Performance

Technical Library | 2019-08-14 22:20:55.0

Cleanliness is a product of design, including component density, standoff height and the cleaning equipment’s ability to deliver the cleaning agent to the source of residue. The presence of manufacturing process soil, such as flux residue, incompletely activated flux, incompletely cured solder masks, debris from handling and processing fixtures, and incomplete removal of cleaning fluids can hinder the functional lifetime of the product. Contaminates trapped under a component are more problematic to failure. Advanced test methods are needed to obtain "objective evidence" for removing flux residues under leadless components.Cleaning process performance is a function of cleaning capacity and defined cleanliness. Cleaning performance can be influenced by the PCB design, cleaning material, cleaning machine, reflow conditions and a wide range of process parameters.This research project is designed to study visual flux residues trapped under the bottom termination of leadless components. This paper will research a non-destructive visual method that can be used to study the cleanability of solder pastes, cleaning material effectiveness for the soil, cleaning machine effectiveness and process parameters needed to render a clean part.

KYZEN Corporation

Solder Joint Encapsulant Adhesive - LGA High Reliability And Low Cost Assembly Solution

Technical Library | 2016-01-12 11:01:25.0

More and more Land Grid Array (LGA) components are being used in electronic devices such as smartphones, tablets and computers. In order to enhance LGA mechanical strength and reliability, capillary flow underfill is used to improve reliability. However, due to the small gap, it is difficult for capillary underfill to flow into the LGA at SMT level. Due to cost considerations, there are usually no pre-heating underfill or cleaning flux residue processes at the SMT assembly line. YINCAE solder joint encapsulant SMT256 has been successfully used with solder paste for LGA assembly. Solder joint encapsulant is used in in-line LGA soldering process with enhanced reliability. It eliminates the underfilling process and provides excellent reworkability. The shear st rength of solder joint is stronger than that of underfilled components. The thermal cycling performance using solder joint encapsulant is much better than that using underfill. Bottom IC of POP has been studied for further understanding of LGA assembly process parameters. All details such as assembly process, drop test and thermal cycling test will be discussed in this paper.

YINCAE Advanced Materials, LLC.

Novel Approach to Void Reduction Using Microflux Coated Solder Preforms for QFN/BTC Packages that Generate Heat

Technical Library | 2019-08-07 22:56:45.0

The requirement to reconsider traditional soldering methods is becoming more relevant as the demand for bottom terminated components (QFN/BTC) increases. Thermal pads under said components are designed to enhance the thermal and electrical performance of the component and ultimately allow the component to run more efficiently. Additionally, low voiding is important in decreasing the current path of the circuit to maximize high speed and RF performances. The demand to develop smaller, more reliable, packages has seen voiding requirements decrease below 15 percent and in some instances, below 10 percent.Earlier work has demonstrated the use of micro-fluxed solder preforms as a mechanism to reduce voiding. The current work builds upon these results to focus on developing an engineered approach to void reduction in leadless components (QFN) through increasing understanding of how processing parameters and a use of custom designed micro-fluxed preforms interact. Leveraging the use of a micro-fluxed solder preform in conjunction with low voiding solder paste, stencil design, and application knowhow are critical factors in determining voiding in QFN packages. The study presented seeks to understand the vectors that can contribute to voiding such as PCB pad finish, reflow profile, reflow atmosphere, via configuration, and ultimately solder design.A collaboration between three companies consisting of solder materials supplier, a power semiconductor supplier, and an electronic assembly manufacturer worked together for an in-depth study into the effectiveness of solder preforms at reducing voiding under some of the most prevalent bottom terminated components packages. The effects of factors such as thermal pad size, finish on PCB, preform types, stencil design, reflow profile and atmosphere, have been evaluated using lead-free SAC305 low voiding solder paste and micro-fluxed preforms. Design and manufacturing rules developed from this work will be discussed.

Alpha Assembly Solutions

  1 2 Next

solder paste inspction parameters searches for Companies, Equipment, Machines, Suppliers & Information