Technical Library: solder paste thickness (Page 10 of 19)

Study on the Reliability of Sn–Bi Composite Solder Pastes with Thermosetting Epoxy under Thermal Cycling and Humidity Treatment

Technical Library | 2021-08-25 16:28:36.0

In this study, a Sn–Bi composite solder paste with thermosetting epoxy (TSEP Sn–Bi) was prepared by mixing Sn–Bi solder powder, flux, and epoxy system. The melting characteristics of the Sn–Bi solder alloy and the curing reaction of the epoxy system were measured by differential scanning calorimeter (DSC). A reflow profile was optimized based on the Sn–Bi reflow profile, and the Organic Solderability Preservative (OSP) Cu pad mounted 0603 chip resistor was chosen to reflow soldering and to prepare samples of the corresponding joint. The high temperature and humidity reliability of the solder joints at 85 #14;C/85% RH (Relative Humidity) for 1000 h and the thermal cycle reliability of the solder joints from

Nanjing University

High Reliability and High Temperature Application Solution - Solder Joint Encapsulant Paste

Technical Library | 2017-10-16 15:03:32.0

The miniaturization and advancement of electronic devices have been the driving force of design, research and development, and manufacturing in the electronic industry. However, there are some issues occurred associated with the miniaturization, for examples, warpage and reliability issues. In order to resolve these issues, a lot of research and development have been conducted in the industry and university with the target of moderate melting temperature solder alloys such as m.p. 280°C. These moderate temperature alloys have not resolve these issues yet due to the various limitations. YINCAE has been working on research and development of the materials with lower temperature soldering for higher temperature application. To meet this demand, YINCAE has developed solder joint encapsulant paste to enhance solder joint strength resulting in improving drop and thermal cycling performance to eliminate underfilling, edge bonding or corner bonding process in the board level assembly process. This solder joint encapsulant paste can be used in typical lead-free profile and after reflow the application temperature can be up to over 300C, therefore it also eliminates red glue for double side reflow process. In this paper, we will discuss the reliability such as strength of solder joints, drop test performance and thermal cycling performance using this solder joint encapsulant paste in detail.

YINCAE Advanced Materials, LLC.

How Clean Is Clean?

Technical Library | 2009-03-19 20:23:54.0

Over the past several years, post-reflow defluxing of circuit assemblies has gained in popularity. Microminiaturization of components and boards, combined with higher expected reliability and increased product liability, have contributed to the prominence of defluxing. Lead-free solder paste - with its higher reflow temperatures and negative effects on flux - increase the likelihood of post-reflow defluxing to increase a product's reliability and aesthetic appearance.

Aqueous Technologies Corporation

ACHIEVING EXCELLENT VERTICAL HOLE FILL ON THERMALLY CHALLENGING BOARDS USING SELECTIVE SOLDERING

Technical Library | 2023-11-14 19:52:11.0

The continuous drive in the Electronics industry to build new and innovative products has caused competitive design companies to develop assemblies with consolidated PCB designs, decreased physical sizes, and increased performance characteristics. As a result of these new designs, manufacturers of electronics are forced to contend with many challenges. One of the most significant challenges being the processing of thru-hole components on high thermal mass PCBs having the potential to exceed 20 layers in thicknesses and have copper mass contents of over 40oz. High thermal mass PCBs, coupled with the use of mixed technologies, decreased component spacing, and the change from Tin Lead Solder to Lead Free Alloys has lead many manufacturing facilities to purchase advanced soldering equipment to process challenging assemblies with a high degree of repeatability.

Plexus Corporation

The Pin-in-Paste (or AART) Process for Odd Form and Through Hole Printed Circuit Boards

Technical Library | 2007-09-27 16:18:15.0

Considerable interest exists in the process known as the pinin- paste, or the Alternative Assembly and Reflow Technology (AART) process. The AART process allows for the simultaneous reflow of both odd-form and through hole devices as well as surface mount components. This process has several advantages over the typical mixed technology process sequence that includes wave soldering and/or hand soldering, often in addition to reflow soldering.

Universal Instruments Corporation

Stencil Design For Mixed Technology Through-Hole / Smt Placement And Reflow

Technical Library | 2023-06-12 18:52:18.0

This paper will review stencil design requirements for printing solder paste around and in through-hole pads / openings. There is much interest in this procedure since full implementation allows the placement of both through-hole components as well as SMD's and the subsequent reflow of both simultaneously. This in turn eliminates the need to wave solder or hand solder through-hole components.

Photo Stencil LLC

Reliability of BGA Solder Joints after Re-Balling Process

Technical Library | 2012-10-04 18:52:43.0

First published in the 2012 IPC APEX EXPO technical conference proceedings... Due to the obsolescence of SnPb BGA components, electronics manufacturers that use SnPb solder paste either have to use lead-free BGAs and adjust the reflow process or re-ball t

Mat-tech

A Novel Material for High Layer Count and High Reliability Printed Circuit Boards

Technical Library | 2012-09-27 19:50:01.0

First published in the 2012 IPC APEX EXPO technical conference proceedings. Over the past few years a new family of laminate systems has been developed to face the increasing physical demands of withstanding Pb-free soldering processes used in the assembl

Shengyi Technology Co., Ltd.

BTC and SMT Rework Challenges

Technical Library | 2019-05-22 21:24:05.0

voidless treatment Smaller components -> miniaturization (01005 capability) Large board handling -> dynamic preheating for large board repair Repeatable processes -> flux and paste application (Dip and Print), residual solder removal (scavenging), dispensing, multiple component handling, and traceability Operator support -> higher automation, software guidance

kurtz ersa Corporation

Investigation and Development of Tin-Lead and Lead-Free Solder Pastes to Reduce the Head-In-Pillow Component Soldering Defect.

Technical Library | 2014-03-06 19:04:07.0

Over the last few years, there has been an increase in the rate of Head-in-Pillow component soldering defects which interrupts the merger of the BGA/CSP component solder spheres with the molten solder paste during reflow. The issue has occurred across a broad segment of industries including consumer, telecom and military. There are many reasons for this issue such as warpage issues of the component or board, ball co-planarity issues for BGA/CSP components and non-wetting of the component based on contamination or excessive oxidation of the component coating. The issue has been found to occur not only on lead-free soldered assemblies where the increased soldering temperatures may give rise to increase component/board warpage but also on tin-lead soldered assemblies.

Christopher Associates Inc.


solder paste thickness searches for Companies, Equipment, Machines, Suppliers & Information



Stencil Printing 101 Training Course
Void Free Reflow Soldering

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.
SMT feeders

World's Best Reflow Oven Customizable for Unique Applications