Technical Library: stencil cleaning after print (Page 1 of 2)

Cleanliness of Stencils and Cleaned Misprinted Circuit Boards

Technical Library | 2010-09-09 16:44:48.0

The effectiveness of cleaning stencils and misprinted/dirty printed circuit boards can be effectively monitored. This can be done by washing known clean circuit boards and then checking to see if they have stayed clean as a result of the washing process.

Research In Motion

Compatibility of Cleaning Agents With Nano-Coated Stencils

Technical Library | 2013-03-12 13:25:18.0

High density and miniaturized circuit assemblies challenge the solder paste printing process. The use of small components such as 0201, 01005 and μBGA devices require good paste release to prevent solder paste bridging and misalignment. When placing these miniaturized components, taller paste deposits are often required. To improve solder paste deposition, a nano-coating is applied to laser cut stencils to improve transfer efficiency. One concern is the compatibility of the nano-coating with cleaning agents used in understencil wipe and stencil cleaning. The purpose of this research is to test the chemical compatibility of common cleaning agents used in understencil wipe and stencil cleaning processes.Compatibility of Cleaning Agents With Nano-Coated Stencils

KYZEN Corporation

Recurrent Neural Network-Based Stencil Cleaning Cycle Predictive Modeling

Technical Library | 2023-06-12 18:33:29.0

This paper presents a real-time predictive approach to improve solder paste stencil printing cycle decision making process in surface mount assembly lines. Stencil cleaning is a critical process that influences the quality and efficiency of printing circuit board. Stencil cleaning operation depends on various process variables, such as printing speed, printing pressure, and aperture shape. The objective of this research is to help efficiently decide stencil printing cleaning cycle by applying data-driven predictive methods. To predict the printed circuit board quality level, a recurrent neural network (RNN) is applied to obtain the printing performance for the different cleaning aging. In the prediction model, not only the previous printing performance statuses are included, but also the printing settings are used to enhance the RNN learning. The model is tested using data collected from an actual solder paste stencil printing line. Based on the predicted printing performance level, the model can help automatically identify the possible cleaning cycle in practice. The results indicate that the proposed model architecture can predictively provide accurate solder paste printing process information to decision makers and increase the quality of the stencil printing process.

Binghamton University

Evaluation of Under-Stencil Cleaning Papers

Technical Library | 2016-08-04 14:33:23.0

Solder paste screen printing is known to be one of the most difficult processes to quality assure in Printed Board Assembly (PBA) manufacturing. An important process step in solder paste screen printing is the under stencil cleaning process and one of the key materials in this process is the cleaning paper1. This, often neglected, material affects the cleaning process and thereby also the print quality. It is therefore important to perform tests of different cleaning papers before one could be chosen. This article describes how cleaning papers can be tested and it also tells how big differences it can be between different materials.

Ericsson AB

SMT Under Stencil Wiper Rolls

Technical Library | 2019-06-03 21:07:34.0

The objective of this White Paper is to provide users of the above products in the electronics industry a clear understanding of the different types of stencil cleaning paper/fabrics that are currently available. Fine pitch applications are more the norm now and so the performance of stencil cleaning rolls is more critical than ever before. This White Paper will give solder paste stencil printing engineers and purchasing professionals an insight into the main products on the market, thereby enabling them to make informed decisions.

Swiftmode Malaysia (Penang) Sdn Bhd

Stencil Printing Yield Improvements

Technical Library | 2014-06-05 16:44:07.0

Stencil printing capability is becoming more important as the range of component sizes assembled on a single board increases. Coupled with increased component density, solder paste sticking to the aperture sidewalls and bottom of the stencil can cause insufficient solder paste deposits and solder bridging. Yield improvement requires increased focus on stencil technology, printer capability, solder paste functionality and understencil cleaning.(...) The purpose of this research is to study the wipe sequence, wipe frequency and wipe solvent(s) and how these factors interact to provide solder paste printing yield improvement.

KYZEN Corporation

The Nature of White Residue on Printed Circuit Assemblies

Technical Library | 1999-05-07 10:47:00.0

White residue remaining after cleaning circuit board assemblies can be caused by a variety of chemicals and reactions. Rosin and water-soluble fluxes, circuit board resins and epoxies, component materials and other contamination all contribute to this complex chemistry. This paper discusses many of the sources of the residues that seem to be an ever-increasing occurrence.

Kester

CHANGING THE RULES OF STENCIL DESIGN

Technical Library | 2023-05-22 16:42:56.0

Nano-coatings are applied to solder paste stencils with the intent of improving the solder paste printing process. Do they really make a noticeable improvement? The effect of Nano-coatings on solder paste print performance was investigated. Transfer efficiencies were studied across aperture sizes ranging from 0.30 to 0.80 area ratio. Also investigated were the effects of Nano-coatings on transfer efficiencies of tin-lead, lead-free, water soluble, no-clean, and type 3, 4, and 5 solder pastes. Solder paste print performance for each Nano-coating was summarized with respect to all of these variables.

FCT ASSEMBLY, INC.

Stencil Printing Process Tools for Miniaturisation and High Yield Processing

Technical Library | 2023-06-12 19:00:21.0

The SMT print process is now very mature and well understood. However as consumers continually push for new electronic products, with increased functionality and smaller form factor, the boundaries of the whole assembly process are continually being challenged. Miniaturisation raises a number of issues for the stencil printing process. How small can we print? What are the tightest pitches? Can we print small deposits next too large for high mix technology assemblies? How closely can we place components for high density products? ...And then on top of this, how can we satisfy some of the cost pressures through the whole supply chain and improve yield in the production process! Today we are operating close to the limits of the stencil printing process. The area ratio rule (the relationship between stencil aperture opening and aperture surface area) fundamentally dictates what can and cannot be achieved in a print process. For next generation components and assembly processes these established rules need to be broken! New stencil printing techniques are becoming available which address some of these challenges. Active squeegees have been shown to push area ratio limits to new boundaries, permitting printing for next generation 0.3CSP technology. Results also indicate there are potential yield benefits for today's leading edge components as well. Stencil coatings are also showing promise. In tests performed to date it is becoming apparent that certain coatings can provide higher yield processing by extending the number of prints that can be performed in-between stencil cleans during a print process. Preliminary test results relating to the stencil coating technology and how they impact miniaturisation and high yield processing will be presented.

ASM Assembly Systems (DEK)

Can Nano-Coatings Really Improve Stencil Performance?

Technical Library | 2017-10-26 01:18:49.0

Nano-coatings have been introduced by various manufacturers, with the promise of addressing some of the challenges relative to solder paste printing. Stated benefits include: Reduced underside cleaning, reduced bridging, improved solder paste release and improvements in yield. With several nano technologies already on the market and more likely to be introduced, how can the performance be quantified? How robust are these coatings? How can an assembler approach the ROI of these coatings? What hidden benefits or negative impacts should be considered? This paper will present a rigorous method for evaluating the performance and economic benefits of solder paste stencil nano-coatings.

FCT ASSEMBLY, INC.

  1 2 Next

stencil cleaning after print searches for Companies, Equipment, Machines, Suppliers & Information