Technical Library: stencil printing on flex (Page 1 of 2)

SMT Stencil Design And Consideration Base on IPC

Technical Library | 2010-03-23 11:50:22.0

This document discuss how to design SMT stencil base on IPC-7525. Introduction: PCBA (Printed Circuit Board Assembly) is a segment of printed circuit board technology. This segment of printed circuit board industry is concentrated in assemble all the pieces of electronic industry to one piece before output them to market. This segment covers: interconnection technology, package design technology, system integration technology, board and system test technology

Association Connecting Electronics Industries (IPC)

Recommendations for Installing Flash LEDs on Flex Circuits

Technical Library | 2009-12-09 19:47:15.0

For the mobile market some PCB assemblies have been converted to flex circuit assemblies, in part because flex circuit assembly can be twisted or bent per the application needs. Flex circuits offer the same advantages as conventional printed circuit boards: quality, reliability, and high density.

Avago Technologies

Effect of Nano-Coated Stencil on 01005 Printing

Technical Library | 2021-11-17 18:53:50.0

The demand for product miniaturization, especially in the handheld device area, continues to challenge the board assembly industry. The desire to incorporate more functionality while making the product smaller continues to push board design to its limit. It is not uncommon to find boards with castle-like components right next to miniature components. This type of board poses a special challenge to the board assemblers as it requires a wide range of paste volume to satisfy both small and large components. One way to address the printing challenge is to use creative stencil design to meet the solder paste requirement for both large and small components. ... The most important attribute of a stencil is its release characteristic. In other words, how well the paste releases from the aperture. The paste release, in turn, depends on the surface characteristics of the aperture wall and stencil foil. The recent introduction of new technology, nano-coating for both stencil and squeegee blades, has drawn the attention of many researchers. As the name implies, nano-coated stencils and blades are made by a conventional method such as laser-cut or electroformed then coated with nano-functional material to alter the surface characteristics. This study will evaluate nano-coated stencils for passive component printing, including 01005.

Speedline Technologies, Inc.

Impact of FPC Fabrication Process on SMT Reliability

Technical Library | 2013-12-05 17:09:03.0

The functionality of electronic devices continues to increase at an extraordinary rate. Simultaneously consumers are expecting even more and in ever smaller packages. One enabler for shrinking electronics has been the flexible circuit board that allows the circuit board to fit a wide variety of shapes. Flexible printed circuits (FPC) have the capability to be very thin and can have unpackaged components directly attached using surface mount technology (SMT) and flip chip on flex technologies. Bare die can also be thinned and attached very close to the circuit board. However one caveat of high density flexible circuit boards with thin die is that they can be very fragile. The use of back side films and underfill can protect the die making circuits more robust. For underfill to work well it requires good adhesion to the circuit board which can mean that flux residues under the die normally must be removed prior to underfilling.

Starkey Hearing Technologies

The Effect of Higher Stencil Tension on Printing Performance

Technical Library | 2023-06-12 19:07:04.0

In this article we will examine if there is a measurable difference in the printing performance when using stencils which have a higher tension than is commonly accepted in the industry. Alpha's new tensoRED™ High Tension Frame System will be introduced during this wider examination. We will examine their effect in terms of controlling variation in critical deposit volumes and what, if any effect on positional accuracy can be seen.

Alpha Assembly Solutions

Factors That Influence Side-Wetting Performance on IC Terminals

Technical Library | 2023-08-04 15:27:30.0

A designed experiment evaluated the influence of several variables on appearance and strength of Pb-free solder joints. Components, with leads finished with nickel-palladium-gold (NiPdAu), were used from Texas Instruments (TI) and two other integrated circuit suppliers. Pb-free solder paste used was tin-silver-copper (SnAgCu) alloy. Variables were printed wiring board (PWB) pad size/stencil aperture (the pad finish was consistent; electrolysis Ni/immersion Au), reflow atmosphere, reflow temperature, Pd thickness in the NiPdAu finish, and thermal aging. Height of solder wetting to component lead sides was measured for both ceramic plate and PWB soldering. A third response was solder joint strength; a "lead pull" test determined the maximum force needed to pull the component lead from the PWB. This paper presents a statistical analysis of the designed experiment. Reflow atmosphere and pad size/stencil aperture have the greatest contribution to the height of lead side wetting. Reflow temperature, palladium thickness, and preconditioning had very little impact on side-wetting height. For lead pull, variance in the data was relatively small and the factors tested had little impact.

Texas Instruments

Effects of Assebly Process Variables on Voiding at a Thermal Interface.

Technical Library | 2007-04-04 11:43:41.0

The present work offers a discussion and a first case study to identify and illustrate voiding mechanisms for a particular TIM between a heat spreader and the back of a flip chip. Pronounced differences were observed between stencil printing and dispensing in terms of initial void formation, apparently related to the specific properties of the material. Measurements of the effects of heat ramp rate and peak temperature showed the subsequent evolution and final void size distribution to be determined by the initial part of the cure profile up to the material gelling temperature.

Universal Instruments Corporation

Size Matters - The Effects of Solder Powder Size on Solder Paste Performance

Technical Library | 2020-10-27 02:02:17.0

Solder powder size is a popular topic in the electronics industry due to the continuing trend of miniaturization of electronics. The question commonly asked is "when should we switch from Type 3 to a smaller solder powder?" Solder powder size is usually chosen based on the printing requirements for the solder paste. It is common practice to use IPC Type 4 or 5 solder powders for stencil designs that include area ratios below the recommended IPC limit of 0.66. The effects of solder powder size on printability of solder paste have been well documented. The size of the solder powder affects the performance of the solder paste in other ways. Shelf life, stencil life, reflow performance, voiding behavior, and reactivity / stability are all affected by solder powder size. Testing was conducted to measure each of these solder paste performance attributes for IPC Type 3, Type 4, Type 5 and Type 6 SAC305 solder powders in both water soluble and no clean solder pastes. The performance data for each size of solder powder in each solder paste flux was quantified and summarized. Guidance for choosing the optimal size of solder powder is given based on the results of this study.

FCT ASSEMBLY, INC.

Board Design and Assembly Process Evaluation for 0201 Components on PCBs

Technical Library | 2023-05-02 19:06:43.0

As 0402 has become a common package for printed circuit board (PCB) assembly, research and development on mounting 0201 components is emerging as an important topic in the field of surface mount technology for PWB miniaturization. In this study, a test vehicle for 0201 packages was designed to investigate board design and assembly issues. Design of Experiment (DOE) was utilized, using the test vehicle, to explore the influence of key parameters in pad design, printing, pick-andplace, and reflow on the assembly process. These key parameters include printing parameters, mounting height or placement pressure, reflow ramping rate, soak time and peak temperature. The pad designs consist of rectangular pad shape, round pad shape and home-based pad shape. For each pad design, several different aperture openings on the stencil were included. The performance parameters from this experiment include solder paste height, solder paste volume and the number of post-reflow defects. By analyzing the DOE results, optimized pad designs and assembly process parameters were determined.

Flextronics International

A Study to Determine the Impact of Solder Powder Mesh Size and Stencil Technology Advancement on Deposition Volume when Printing Solder Paste

Technical Library | 2017-04-13 16:14:27.0

The drive to reduced size and increased functionality is a constant in the world of electronic devices. In order to achieve these goals, the industry has responded with ever-smaller devices and the equipment capable of handling these devices. The evolution of BGA packages and leadless devices is pushing existing technologies to the limit of current assembly techniques and materials.As smaller components make their way into the mainstream PCB assembly market, PCB assemblers are reaching the limits of Type 3 solder paste, which is currently in use by most manufacturers.The goal of this study is to determine the impact on solder volume deposition between Type 3, Type 4 and Type 5 SAC305 alloy powder in combination with stainless steel laser cut, electroformed and the emerging laser cut nano-coated stencils. Leadless QFN and μBGA components will be the focus of the test utilizing optimized aperture designs.

AIM Solder

  1 2 Next

stencil printing on flex searches for Companies, Equipment, Machines, Suppliers & Information

Count On Tools, Inc.
Count On Tools, Inc.

COT specializes in high quality SMT nozzles and consumables for pick and place machines. We provide special engineering design service of custom nozzles for those unique and odd components.

Manufacturer

2481 Hilton Drive
Gainesville, GA USA

Phone: (770) 538-0411

December 2024 Auction

World's Best Reflow Oven Customizable for Unique Applications
SMT feeders

High Precision Fluid Dispensers
Global manufacturing solutions provider

High Throughput Reflow Oven


SMT & PCB Equipment - MPM, DEK, Heller, Europlacer and more...