Technical Library: success rate (Page 1 of 1)

Reflow Soldering Processes and Troubleshooting: SMT, BGA, CSP and Flip Chip Technologies

Technical Library | 2021-01-03 19:24:52.0

Reflow soldering is the primary method for interconnecting surface mount technology (SMT) applications. Successful implementation of this process depends on whether a low defect rate can be achieved. In general, defects often can be attributed to causes rooted in all three aspects, including materials, processes, and designs. Troubleshooting of reflow soldering requires identification and elimination of root causes. Where correcting these causes may be beyond the reach of manufacturers, further optimizing the other relevant factors becomes the next best option in order to minimize the defect rate.

Indium Corporation

High Throw Electroless Copper - Enabling new Opportunities for IC Substrates and HDI Manufacturing

Technical Library | 2017-04-20 13:51:14.0

The one constant in electronics manufacturing is change. Moore's Law, which successfully predicted a rate of change at which transistor counts doubled on Integrated Circuits (ICs) at lower cost for decades, is ceding to be an appropriate prediction tool. Increasing technical and economic requirements, deriving from the semiconductor environment, are cascaded down to the printed circuit and in particular to the IC substrate manufacturers. This is both a challenge and an opportunity for IC Substrate manufacturers, when dealing with the demands of the packaging market. (...)This paper introduces two new electroless copper baths developed for IC substrates manufacturing based on Semi Additive Process (SAP) technology (hereafter referred to as E'less Copper IC) and HDI production (hereafter referred to as E'less Copper HDI) and optimized for high throw into BMVs. An introduction to reliable throwing power measurement methods based on scanning electron microscope (SEM) is given, followed by a compilation and discussion of key performance criteria for each application, namely throwing power, copper adhesion on the substrate, dry film adhesion and reliability.

Atotech

Parasitic Extraction for Deep Submicron and Ultra-deep Submicron Designs

Technical Library | 1999-08-09 11:36:27.0

Shrinking process technologies and increasing design sizes continually challenge design methodologies and EDA tools to develop at an ever-increasing rate. Before the complexities of deep submicron (DSM), gate and transistor delays dominated interconnect delays, and enabled simplified design methodologies that could focus on device analysis. The advent of DSM processes is changing all of this, invalidating assumptions and approximations that existing design methodologies are based upon, and forcing design teams to re-tool. High-capacity parasitic extraction tools are now critical for successful design tape-outs.

Cadence Design Systems, Inc.

  1  

success rate searches for Companies, Equipment, Machines, Suppliers & Information