Technical Library: tg and fine and pitch (Page 1 of 2)

Step Stencil design when 01005 and 0.3mm pitch uBGA's coexist with RF Shields

Technical Library | 2023-07-25 16:50:02.0

Some of the new handheld communication devices offer real challenges to the paste printing process. Normally, there are very small devices like 01005 chip components as well as 0.3 mm pitch uBGA along with other devices that require higher deposits of solder paste. Surface mount connectors or RF shields with coplanarity issues fall into this category. Aperture sizes for the small devices require a stencil thickness in the 50 to 75 um (2-3 mils) range for effective paste transfer whereas the RF shield and SMT connector would like at least 150 um (6 mils) paste height. Spacing is too small to use normal step stencils. This paper will explore a different type of step stencil for this application; a "Two-Print Stencil Process" step stencil. Here is a brief description of a "Two-Print Stencil Process". A 50 to 75 um (2-3 mils) stencil is used to print solder paste for the 01005, 0.3 mm pitch uBGA and other fine pitch components. While this paste is still wet a second in-line stencil printer is used to print all other components using a second thicker stencil. This second stencil has relief pockets on the contact side of the stencil any paste was printed with the first stencil. Design guidelines for minimum keep-out distances between the relief step, the fine pitch apertures, and the RF Shields apertures as well relief pocket height clearance of the paste printed by the first print stencil will be provided.

Photo Stencil LLC

Assembly and Reliability of 1704 I/O FCBGA and FPBGAs

Technical Library | 2013-03-14 17:19:28.0

Commercial-off-the-shelf ball/column grid array packaging (COTS BGA/CGA) technologies in high reliability versions are now being considered for use in a number of National Aeronautics and Space Administration (NASA) electronic systems. Understanding the process and quality assurance (QA) indicators for reliability are important for low-risk insertion of these advanced electronic packages. This talk briefly discusses an overview of packaging trends for area array packages from wire bond to flip-chip ball grid array (FCBGA) as well as column grid array (CGA). It then presents test data including manufacturing and assembly board-level reliability for FCBGA packages with 1704 I/Os and 1-mm pitch, fine pitch BGA (FPBGA) with 432 I/Os and 0.4-mm pitch, and PBGA with 676 I/Os and 1.0-mm pitch packages. First published in the 2012 IPC APEX EXPO technical conference proceedings.

Jet Propulsion Laboratory

Lead-free and Tin-lead Assembly and Reliability of Fine-pitch Wafer-Level CSPs

Technical Library | 2007-05-31 19:05:55.0

This paper discusses solder paste printing and flux dipping assembly processes for 0.4 and 0.5mm pitch lead-free WLCSPs and the corresponding assembly results and thermal cyclic reliability obtained. Variables evaluated include reflow ambient, paste type, and stencil design. Reliability is also compared to results for the same components assembled under identical conditions using SnPb solder.

Universal Instruments Corporation

Microspring Characterization and Flip-Chip Assembly Reliability

Technical Library | 2014-05-29 13:48:14.0

Electronics packaging based on stress-engineered spring interconnects has the potential to enable integrated IC testing, fine pitch, and compliance not readily available with other technologies. We describe new spring contacts which simultaneously achieve low resistance ( 30 μm) in dense 2-D arrays (180 ~ 180-µm pitch). Mechanical characterization shows that individual springs operate at approximately 150-µN force. Electrical measurements and simulations imply that the interface contact resistance contribution to a single contact resistance is This paper suggests that integrated testing and packaging can be performed with the springs, enabling new capabilities for markets such as multichip modules.

Institute of Electrical and Electronics Engineers (IEEE)

Process Issues For Fine Pitch CSP Rework and Scavenging

Technical Library | 2013-03-04 16:51:00.0

Chip-scale (or chip-size) packages are rapidly becoming an important element in electronics due to their size, performance, and cost advantages [Hou, 1998]. The Chip Scale Package (CSP) is becoming a key semiconductor package type, particularly for consumer products. Due to their relatively smaller size, new challenges are presented in the rework and repair of CSPs. (...) The specific focus of this paper is the removal process for rework of CSPs and the site scavenging methods required to properly prepare the circuit board for a new component. Process factors such as the heating, fluxing and, atmosphere are discussed.

Universal Instruments Corporation

Techniques for Selective Soldering High Thermal Mass and Fine-Pitch Components

Technical Library | 2022-08-08 15:06:06.0

Selective soldering has evolved to become a standard production process within the electronics assembly industry, and now accommodates a wide variety of through-hole component formats in numerous applications. Most through-hole components can be easily soldered with the selective soldering process without difficulty however some types of challenging components require additional attention to ensure that optimum quality is maintained. Several high thermal mass components can place demands on the selective soldering process, while the use of specialized solder fixtures, or solder pallets, often places additional thermal demand on the preheating process. Fine-pitch through-hole components and connectors place a different set of demands on the selective soldering process and typically require special attention to lead projection and traverse speed to minimize bridging between adjacent pins. Dual in-line memory module (DIMM) connectors, compact peripheral component interface (cPCI) connectors, coax connectors and other high thermal mass components as well as fine-pitch microconnectors, can present challenges when soldered into backplanes or multilayer printed circuit board assemblies. Adding to this challenge, compact peripheral component interface connectors can present additional solderability issues because of their beryllium copper base metal pins. Key Terms: Selective soldering, drop-jet fluxing, sustained preheating, flux migration, adjacent clearance, lead-to-hole aspect ratio, lead projection, thermal reliefs, gold embrittlement, solderability testing.

Hentec Industries, Inc. (RPS Automation)

High Frequency Electrical Performance and Thermo-Mechanical Reliability of Fine-Pitch, Copper - Metallized Through-Package-Vias (TPVs) in Ultra - thin Glass Interposers

Technical Library | 2017-08-10 01:23:22.0

This paper demonstrates the high frequency performance and thermo-mechanical reliability of through vias with 25 μm diameter at 50 μm pitch in 100 μm thin glass substrates. Scaling of through via interconnect diameter and pitch has several electrical performance advantages for high bandwidth 2.5D interposers as well as mm-wave components for 5G modules.

Georgia Institute of Technology

Packaging Technology and Design Challenge for Fine Pitch Micro-Bump Cu-Pillar and BOT (Direct Bond on Substrate-Trace) Using TCNCP

Technical Library | 2015-12-02 18:32:50.0

(Thermal Compression with Non-Conductive Paste Underfill) Method.The companies writing this paper have jointly developed Copper (Cu) Pillar micro-bump and TCNCP(Thermal Compression with Non-Conductive Paste) technology over the last two+ years. The Cu Pillar micro-bump and TCNCP is one of the platform technologies, which is essentially required for 2.5D/3D chip stacking as well as cost effective SFF (small form factor) package enablement.Although the baseline packaging process methodology for a normal pad pitch (i.e. inline 50μm) within smaller chip size (i.e. 100 mm2) has been established and are in use for HVM production, there are several challenges to be addressed for further development for commercialization of finer bump pitch with larger die (i.e. ≤50μm tri-tier bond pad with the die larger than 400mm2).This paper will address the key challenges of each field, such as the Cu trace design on a substrate for robust micro-joint reliability, TCNCP technology, and substrate technology (i.e. structure, surface finish). Technical recommendations based on the lessons learned from a series of process experimentation will be provided, as well. Finally, this technology has been used for the successful launching of the company FPGA products with SFF packaging technology.

Altera Corporation

Solutions for Selective Soldering of High Thermal Mass and Fine-Pitch Components

Technical Library | 2020-05-07 03:46:27.0

The selective soldering process has evolved to become a standard production process within the electronics assembly industry, and now accommodates a wide variety of through-hole component formats in numerous applications. Most through-hole components can be easily soldered with the selective soldering process without difficulty, however some types of challenging components require additional attention to ensure optimum quality control is maintained. Several high thermal mass components can place demands on the selective soldering process, while the use of specialized solder fixtures and/or pallets often places an additional thermal demand on the preheating process. Fine-pitch through-hole components and connectors place a different set of demands on the selective soldering process and typically require special attention to lead projection and traverse speed to minimize bridging between adjacent pins. Dual in-line memory module (DIMM) connectors, compact peripheral component interface (cPCI) connectors, coax connectors and other high thermal mass components as well as fine-pitch microconnectors,can present challenges when soldered into backplanes or multilayer printed circuit board assemblies. Adding to this challenge, compact peripheral component interface connectors can present additional solderability issues due to their beryllium copper termination pins.

SELECT Products | Nordson Electronics Solutions

A Room Temperature Stable and Jetable Solder Joint Encapsulant Adhesive - Capillary Underfill Replacement

Technical Library | 2016-01-12 11:07:56.0

With the increasing demand of device miniaturization, high speed, more memory, more function, low cost, and more flexibility in device design and manufacturing chain, YINCAE has published a white paper on a first individual solder joint encapsulant which can eliminate underfilling process with at least five times solder joint increase and provide more flexibility for fine pitch and high density application. In order to meet the demand of manufacturing of high speed and low cost, YINCAE has invented a room temperature stable and jettable solder joint encapsulant adhesive – SMT 266. The invention of SMT 266 has allowed our customers to have more flexibility in their high-speed production line such as worry free on the work life of adhesive and workable jetting process.

YINCAE Advanced Materials, LLC.

  1 2 Next

tg and fine and pitch searches for Companies, Equipment, Machines, Suppliers & Information

Best SMT Reflow Oven

High Precision Fluid Dispensers
Solder Paste Dispensing

Best Reflow Oven
SMT feeders

World's Best Reflow Oven Customizable for Unique Applications