Technical Library | 2007-02-01 09:27:47.0
The purpose of the testing was to compare the resistance and check for open circuit conditions of reworked BGA test samples made with and without StencilQuik™ after 500 thermal shock cycles. StencilQuick™ is a product of Best Inc. In this series of tests, the resistance of daisy chain resistance patterns running between the BGA and test board after exposure to thermal shock was measured.
Technical Library | 2007-01-31 15:17:04.0
The goal of this project is to evaluate the reliability of lead-free BGA solder joints with a variety of different pad sizes using several different BGA rework methods. These methods included BGAs reworked with both flux only and solder paste attachment techniques and with or without the use of the BEST stay in place StencilQuick™. The daisy chained test boards were placed into a thermal test chamber and cycled between -25ºC to 125ºC over a 30 minute cycle with a 30 minute dwell on each end of the cycle. Each BGA on the board was wired and the continuity assessed during the 1000 cycles the test samples were in the chamber.
Technical Library | 2017-08-24 16:53:20.0
With the rapid development of the information industry, increasing attention is being paid to the dielectric performance of base materials including copper-clad laminates (CCL) and prepregs. In addition to the increasingly high performance requirements of CCL's, the present global attention to less toxic products is leading to an increase in the use of halogen-free flame retardants in electronics. (...) This paper introduces a new phosphonate oligomer which can be used as a reactive flame retardant in epoxy based resin systems. Suitable conditions for the complete reaction between the phosphonate oligomer and epoxy resin are described and the resulting halogen-free laminates with improved properties such as low Df, low coefficient of thermal expansion (CTE), high peel strength, and good toughness are presented.
Technical Library | 2014-04-11 16:03:15.0
In order to meet the increasing demand of device miniaturization, high speed, more memory, more function, low cost, and more flexibility in device design and manufacturing chain, underfilling has increasingly become an essential process for the good reliability of electronic devices. Filled capillary underfill has been selected for use in package-level where there is large thermal stress caused by CTE mismatch issue, but the underfill is usually not reworkable. Unfilled capillary underfill has been used for board-level application such as BGA/CSP, POP, WL-CSP where there is need for mechanical shock resistance, the underfill is usually reworkable.
Technical Library | 2016-01-12 11:09:47.0
In order to meet the increasing demand of device miniaturization, high speed, more memory, more function, low cost, and more flexibility in device design and manufacturing chain, underfilling has increasingly become an essential process for the good reliability of electronic devices. Filled capillary underfill has been selected for used in package-level where there is large thermal stress caused by CTE mismatch issue, but the underfill is usually not reworkable. Unfilled capillary underfill has been used for board-level application such as BGA/CSP, POP, WL-CSP where there is need for mechanical shock resistance, the underfill is usually reworkable.
Technical Library | 2013-01-09 18:31:54.0
The increased temperatures associated with lead free processes have produced significant challenges for PWB laminates. Newly developed laminates have different curing processes, are commonly filled with ceramic particles or micro-clays and can have higher Tg values. These changes designed to reduce Z-axis expansion and improve the materials resistance to thermal excursions through primary attach and rework operations have also produced harder resin systems with reduced fracture toughness.
Technical Library | 2022-10-11 20:15:14.0
The increased temperatures associated with Pb-free processes have produced significant challenges for PWB laminates. Newly developed laminates have different curing processes, are commonly filled with ceramic particles or micro-clays and can have higher Tg values. These changes which are aimed at improving the materials resistance to thermal excursions and maintaining electrical integrity through primary attach and rework operations have also had the effect of producing harder resin systems with lower fracture toughness.
Technical Library | 2016-10-03 08:28:47.0
With the miniaturization of electronic device, Land Grid Array (LGA) or QFN has been widely used in consumer electronic products. However there is only 20-30 microns gap left between LGA and the substrate, it is very difficult for capillary underfill to flow into the large LGA component at room temperature. Insufficient underfilling will lead to the loss of quality control and the poor reliability issue. In order to resolve these issues, a room temperature fast flow reworkable underfill has been successfully developed with excellent flowability. The underfill can flow into 20 microns gap and complete the flow of 15mm distance for about 30 seconds at room temperature. The curing behavior, storage, thermal cycling performance and reworkability will be discussed in details in this paper.
Technical Library | 2017-08-17 12:23:27.0
A novel epoxy flux EF-A was developed with good compatibility with no-clean solder pastes, and imparts high reliability for BGA assembly at a low cost. This compatibility with solder pastes is achieved by a well-engineered miscibility between epoxy and no-clean solder paste flux systems, and is further assured with the introduction of a venting channel. The compatibility enables a single bonding step for BGAs or CSPs, which exhibit high thermal warpage, to form a high-reliability assembly. Requirements in drop test, thermal cycling test (TCT), and SIR are all met by this epoxy flux, EF-A. The high viscosity stability at ambient temperature is another critical element in building a robust and userfriendly epoxy flux system. EF-A can be deposited with dipping, dispensing, and jetting. Its 75°C Tg facilitates good reworkability and minimizes the adverse impact of unfilled underfill material on TCT of BGA assemblies.
Technical Library | 2016-01-12 11:05:28.0
The electronic industry is currently very interested in low temperature soldering processes such as using Sn/Bi alloy to improve process yield, eliminate the head-in-pillow effect, and enhance rework yield. However, Sn/Bi alloy is not strong enough to replace lead-free (SAC) and eutectic Sn/Pb alloys in most applications. In order to improve the strength of Sn/Bi solder joints, enhance mechanical performance, and improve reliability properties such as thermal cycling performance of soldered electronic devices, YINCAE has developed a low temperature solder joint encapsulant for Sn/Bi soldering applications. This low temperature solder joint encapsulant can be dipped, dispensed, or printed. After reflow with Sn/Bi solder paste or alloy, solder joint encapsulant encapsulates the solder joint. As a result, the strength of solder joints is enhanced by several times, and thermal cycling performance is significantly improved. All details will be discussed in this paper.