Technical Library | 2008-10-29 18:45:53.0
Growing demand for compact, multi-function electronics products has accelerated component miniaturization and high-density placement, creating new challenges for the electronics manufacturing industry. It is no longer adequate to simply place parts accurately per a pre-defined CAD assembly program because solder paste alignment errors are increasing for numerous reasons. The solution to this problem is a system in which the placement machine can automatically detect and compensate for misalignment of the solder paste to produce high-quality boards regardless of the process errors beforehand.
Technical Library | 2013-08-08 15:23:11.0
In this project Machine Vision PCB Inspection System is applied at the first step of manufacturing, i.e., the making of bare PCB. We first compare a PCB standard image with a PCB image, using a simple subtraction algorithm that can highlight the main problem-regions. We have also seen the effect of noise in a PCB image that at what level this method is suitable to detect the faulty image. Our focus is to detect defects on printed circuit boards & to see the effect of noise. Typical defects that can be detected are over etchings (opens), under-etchings (shorts), holes etc...
Technical Library | 2013-08-15 13:12:11.0
An automated visual PCB inspection is an approach used to counter difficulties occurred in human’s manual inspection that can eliminates subjective aspects and then provides fast, quantitative, and dimensional assessments. In this study, referential approach has been implemented on template and defective PCB images to detect numerous defects on bare PCBs before etching process, since etching usually contributes most destructive defects found on PCBs. The PCB inspection system is then improved by incorporating a geometrical image registration, minimum thresholding technique and median filtering in order to solve alignment and uneven illumination problem. Finally, defect classification operation is employed in order to identify the source for six types of defects namely, missing hole, pin hole, underetch, short-circuit, mousebite, and open-circuit.
Technical Library | 2024-04-29 21:39:52.0
In this paper, we develop and put into practice an Automatic Optical Inspection (AOI) system based on machine vision to check the holes on a printed circuit board (PCB). We incorporate the hardware and software. For the hardware part, we combine a PC, the three-axis positioning system, a lighting device and CCD cameras. For the software part, we utilize image registration, image segmentation, drill numbering, drill contrast, and defect displays to achieve this system. Results indicated that an accuracy of 5µm could be achieved in errors of the PCB holes allowing comparisons to be made. This is significant in inspecting the missing, the multi-hole and the incorrect location of the holes. However, previous work only focusses on one or other feature of the holes. Our research is able to assess multiple features: missing holes, incorrectly located holes and excessive holes. Equally, our results could be displayed as a bar chart and target plot. This has not been achieved before. These displays help users analyze the causes of errors and immediately correct the problems. Additionally, this AOI system is valuable for checking a large number of holes and finding out the defective ones on a PCB. Meanwhile, we apply a 0.1mm image resolution which is better than others used in industry. We set a detecting standard based on 2mm diameter of circles to diagnose the quality of the holes within 10 seconds.
1 |
Industrial Sensor Vision International specializes in advanced camera technology of high resolution fast speed cameras for automation, AOI, 2-D/3-D, SPI inspection and wafer inspection.
3 Morse Road 2A
Oxford, CT USA
Phone: +1 203 592 8723