KDPOF – leading supplier for automotive gigabit transceivers over POF (Plastic Optical Fiber) – is delighted to present a complete POF solution to be seamlessly integrated into the wire harness of the vehicle. At the International Congress Automotive Wire Harness on March 13 and 14, 2018 in Ludwigsburg, Germany, KDPOF will display innovative gigabit POF solutions in partnership with leading wire harness suppliers such as TE and others. "POF cables are very reliable: they can withstand harsh environments and tolerate conditions such as routing across the engine compartment with temperatures as high as 105°C and down to –40°C," stated Carlos Pardo, CEO and Co-founder of KDPOF. "As an optical fiber with a large core, POF is able to withstand vibrations and misalignments much better than other optical or copper alternatives such as glass optical fiber (GOF), coax, and STP."
Well-established engineering collaboration between key leading optoelectronic, connector, and wire harness vendors worldwide ensures a well-supplied and competitive market for all the components needed in the system: Physical Layer (PHY), Fiber Optic Transceiver (FOT), fiber cable, and connectors. All these companies, such as Broadcom (formerly Avago), Hamamatsu, KDPOF, TE, and others, as well as the IEEE and ISO, are ready for the market opportunities that the new gigabit POF technology has opened.
Easy Handling and High Robustness
As a plastic, wide diameter fiber, POF is cheap to manufacture and install. It does not require any sophisticated equipment or professional qualification, and harness manufacturing processes do not need to be changed. Installation is just easy plug and play. Winding and clamping is similar to copper cables. Their good bending performance starts at a radius of 10 mm. Gigabit transmission distances of up to 40 meters are possible without in-line connectors, or 15 meters with up to 4 in-liners. Further, POF allows fast dynamic bending, tight bending, and dark liquid immersion in addition to delivering low noise and robustness regarding incoupling of electromagnetic fields.