Technical Library: automatic inspection of unsolder (Page 1 of 1)

Automatic Visual Inspection of Printed Circuit Board for Defect Detection and Classification

Technical Library | 2021-04-15 14:39:41.0

Inspection of printed circuit board (PCB) has been a crucial process in the electronic manufacturing industry to guarantee product quality & reliability, cut manufacturing cost and to increase production. The PCB inspection involves detection of defects in the PCB and classification of those defects in order to identify the roots of defects. In this paper, all 14 types of defects are detected and are classified in all possible classes ...

S. V. National Institute of Technology

Detection of PCB Soldering Defects using Template Based Image Processing Method

Technical Library | 2021-04-15 14:49:27.0

In this study, a predefined template-based image processing system is proposed to automatically detect of PCB soldering defects that negatively affect circuit operation. The proposed system consists of a scaled inspection structure, a camera, an image processing algorithm merged with Fuzzy and template guided inspection process. The prototype is produced using a plastic material, depending on the focal length of the camera and the PCB size. Image processing step comprises two steps. Firstly, solder joints are determined and boxed using Fuzzy C-means clustering algorithm.

Selcuk University

A Review and Analysis of Automatic Optical Inspection and Quality Monitoring Methods in Electronics Industry

Technical Library | 2022-06-27 16:50:26.0

Electronics industry is one of the fastest evolving, innovative, and most competitive industries. In order to meet the high consumption demands on electronics components, quality standards of the products must be well-maintained. Automatic optical inspection (AOI) is one of the non-destructive techniques used in quality inspection of various products. This technique is considered robust and can replace human inspectors who are subjected to dull and fatigue in performing inspection tasks. A fully automated optical inspection system consists of hardware and software setups. Hardware setup include image sensor and illumination settings and is responsible to acquire the digital image, while the software part implements an inspection algorithm to extract the features of the acquired images and classify them into defected and non-defected based on the user requirements. A sorting mechanism can be used to separate the defective products from the good ones. This article provides a comprehensive review of the various AOI systems used in electronics, micro-electronics, and opto-electronics industries. In this review the defects of the commonly inspected electronic components, such as semiconductor wafers, flat panel displays, printed circuit boards and light emitting diodes, are first explained. Hardware setups used in acquiring images are then discussed in terms of the camera and lighting source selection and configuration. The inspection algorithms used for detecting the defects in the electronic components are discussed in terms of the preprocessing, feature extraction and classification tools used for this purpose. Recent articles that used deep learning algorithms are also reviewed. The article concludes by highlighting the current trends and possible future research directions.

Institute of Electrical and Electronics Engineers (IEEE)

Enhanced X-Ray Inspection of Solder Joints in SMT Electronics Production using Convolutional Neural Networks

Technical Library | 2023-11-20 18:10:20.0

The electronics production is prone to a multitude of possible failures along the production process. Therefore, the manufacturing process of surface-mounted electronics devices (SMD) includes visual quality inspection processes for defect detection. The detection of certain error patterns like solder voids and head in pillow defects require radioscopic inspection. These high-end inspection machines, like the X-ray inspection, rely on static checking routines, programmed manually by the expert user of the machine, to verify the quality. The utilization of the implicit knowledge of domain expert(s), based on soldering guidelines, allows the evaluation of the quality. The distinctive dependence on the individual qualification significantly influences false call rates of the inbuilt computer vision routines. In this contribution, we present a novel framework for the automatic solder joint classification based on Convolutional Neural Networks (CNN), flexibly reclassifying insufficient X-ray inspection results. We utilize existing deep learning network architectures for a region of interest detection on 2D grayscale images. The comparison with product-related meta-data ensures the presence of relevant areas and results in a subsequent classification based on a CNN. Subsequent data augmentation ensures sufficient input features. The results indicate a significant reduction of the false call rate compared to commercial X-ray machines, combined with reduced product-related optimization iterations.

Siemens Process Industries and Drives

How to inspect the temperature recovering time of thermal shock chamber?

Technical Library | 2019-11-12 02:09:22.0

Thermal shock test chamber can be used for testing the chemical change or physical damage on composite materials caused by the thermal expansion and contraction of the sample in the shortest time,which is subjected to extremely and continuous high and low temperature environment.so how to check the temperature recovery time of this chamber? Normally we take following steps to inspect the temepratuire recovering time: 1.Install the temperature sensor at the specified position, and adjust the temperature controller of hot zone and cold zone to the required nominal temperature respectively. 2.The temperature increases and reduces respectively,30min after temperature in two zones reach stable status,record temperature value of the measuring point,pls set the temperature value of two zones to be required nominal temperature. 3.The temperature shock test chamber automatically places the inspected load into theh ot zone,select the corresponding retention time according to regulated standard. 4.Set the transfer time,then the inspection load is transferred from hot zone to cold zone, and the temperature of the measuring point is observed and recorded, and then the reverse conversion of the load from cold zone to hot zone is carried out according to the same method, and the temperature of the measuring point is observed and recorded. www.climatechambers.com

Symor Instrument Equipment Co.,Ltd

An Automatic Optical Inspection System for the Diagnosis of Printed Circuits Based on Neural Networks

Technical Library | 2021-11-22 20:32:10.0

The aim of this work is to define a procedure to develop diagnostic systems for Printed Circuit Boards, based on Automated Optical Inspection with low cost and easy adaptability to different features. A complete system to detect mounting defects in the circuits is presented in this paper. A low cost image acquisition system with high accuracy has been designed to fit this application. Afterward, the resulting images are processed using the Wavelet Transform and Neural Networks, for low computational cost and acceptable precision. The wavelet space represents a compact support for efficient feature extraction with the localization property. The proposed solution is demonstrated on several defects in different kind of circuits.

Vienna University of Technology [TU Wien]

A Machine Vision Based Automatic Optical Inspection System for Measuring Drilling Quality of Printed Circuit Boards

Technical Library | 2024-04-29 21:39:52.0

In this paper, we develop and put into practice an Automatic Optical Inspection (AOI) system based on machine vision to check the holes on a printed circuit board (PCB). We incorporate the hardware and software. For the hardware part, we combine a PC, the three-axis positioning system, a lighting device and CCD cameras. For the software part, we utilize image registration, image segmentation, drill numbering, drill contrast, and defect displays to achieve this system. Results indicated that an accuracy of 5µm could be achieved in errors of the PCB holes allowing comparisons to be made. This is significant in inspecting the missing, the multi-hole and the incorrect location of the holes. However, previous work only focusses on one or other feature of the holes. Our research is able to assess multiple features: missing holes, incorrectly located holes and excessive holes. Equally, our results could be displayed as a bar chart and target plot. This has not been achieved before. These displays help users analyze the causes of errors and immediately correct the problems. Additionally, this AOI system is valuable for checking a large number of holes and finding out the defective ones on a PCB. Meanwhile, we apply a 0.1mm image resolution which is better than others used in industry. We set a detecting standard based on 2mm diameter of circles to diagnose the quality of the holes within 10 seconds.

National Cheng Kung University

  1  

automatic inspection of unsolder searches for Companies, Equipment, Machines, Suppliers & Information

INSPECTION TECH
INSPECTION TECH

Our Company handle AOI (Auto Optical Inspection) and SPI (Solder Paste Inspection) Machines.

Equipment Dealer / Broker / Auctions

Hwaseong-si, Gyeonggi-do, Korea
Hwaseong-si, South Korea

Phone: +82-1029254936