Technical Library: end of life (Page 1 of 6)

Component Obsolescence Still Driving the Counterfeit Market

Technical Library | 2013-04-12 07:31:31.0

As change is inevitable, therefore so is obsolescence. In the electronics sector, stocks of components used in subassemblies will eventually run out, no surprise there! However on many occasions, particularly in the often long product life cycles associated with the traditional UK OEM’s in the industrial, military and medical sectors, to name but three, component supply gets ‘difficult’ long before the customers products themselves reach their ‘end of life’. Component manufacturers work to a commercial agenda; when the popularity of a specific device wanes, or indeed when new features are demanded by the market, they will cease production and redeploy their manufacturing capacity to devices that are being demanded by their high volume customers; the global players.

Vigilant Components

How to extend the lifespan of climatic test chamber?

Technical Library | 2019-05-06 23:13:09.0

Temperature and humidity test chamber has brought a lot of help to many industrial enterprises, but while it brings convenience to us, we should also take good care of them, otherwise they may be brought into the end-of-life phase ahead of time. The way of maintenance is also very simple. After daily use, the equipment is cleaned regularly, but the cleaning of the test chamber is also very skillful. If the operation is wrong, it may also lead to equipment failure. Let‘s learn how to extend the service life of the temperature and humidity test box together. 1, Pls clean the working room with water after each use, then dry the interior with dry cotton cloth. 2, Pls regularly remove dust from the evaporator inside the equipment, and periodically wipe the equipment to ensure clean and tidy. 3, When doing the test, the sample should be uniformly placed onto sample shelves,and the vent should not be blocked to prevent the influence of the test 4, It is necessary to pay attention to the cleaning of water tanks in peacetime, after the test or when the equipment is not intended to be used for a long time, all the water in the tank should be discharged, otherwise it will lead to the formation of scale inside the tank. The water used in the temperature and humidity test chamber must be pure or distilled water, or long-term use may result in a humidifier or internal pipe clogging. Above are the usual use notice of temperature and humidity test chamber, if customer adhere to the above several points,it is really able to prolong the service life of the equipment.

Symor Instrument Equipment Co.,Ltd

The Effects of Long-Term Storage on Solderability of Semiconductor Components

Technical Library | 2022-03-02 21:52:34.0

In today's consumer-driven electronic marketplace many products have a limited useful life and component suppliers are moving to shorter product lifecycles. However, there are several industries that require semiconductor components to have a much longer lifecycle. In many cases application lifecycles within the Industrial, Automotive, Medical, Aerospace and Defense sectors may extend up to 30 years or more. As a result, an ongoing component supply becomes critical to sustaining these applications throughout their useful lifecycle. For this reason, it is often a requirement that semiconductor components be stored for extended periods of time after production ends.

Rochester Electronics LLC

Comparison Of Active And Passive Temperature Cycling

Technical Library | 2020-12-10 15:49:40.0

Electronic assemblies should have longer and longer service life. Today there are partially demanded 20 years of functional capability for electronics for automotive application. On the other hand, smaller components, such as resistors of size 0201, are able to endure an increasing number of thermal cycles until fail of solder joints, so these are tested sometimes up to 4000 cycles. But testing until the end of life is essential for the determination of failure rates and the prognosis of reliability. Such tests require a lot of time, but this is often not available in developing of new modules. A further acceleration by higher cycle temperatures is usually not possible, because the materials are already operated at the upper limit of the load. However, the duration can be shortened by the use of liquids for passive tests, which allow faster temperature changes and shorter dwell times because of better heat transfer compared to air. The question is whether such tests lead to comparable results and what failure mechanisms are becoming effective. The same goes for active temperature cycles, in which the components itself are heated from inside and the substrate remains comparatively cold. This paper describes the various accelerated temperature cycling tests, compares and evaluates the related degradation of solder joints.

University of Rostock

New Life for Aging Electronic Products

Technical Library | 2008-10-01 13:03:00.0

Many Original Equipment Manufacturers, (OEM’s), struggle to continue shipping aging or obsolete electronic products. Electronic products designed five to ten years ago are still relevant in the marketplace. Often these venerable old products have gained particular acceptance amongst a select group of customers. In many cases these old products fulfill a need in a unique manner. Examples include: designs that are grandfathered into an application due to regulatory considerations; designs having unique form-fit-and-function; designs running special software ; designs subject to contractual support and service requirements; designs in which a new contract stipulates delivery of older gear as part of a larger system offering. Any one or all of these reasons can lead an OEM to continue the production of electronic equipment well into its end of useful component life

Orchid Technologies Engineering & Consulting, Inc.

Improved Flux Reliability of Lead-Free Solder Alloy Solder Paste Formulated with Rosin and Anti-Crack Resin for Automotive and Other High Reliability Applications

Technical Library | 2018-09-05 21:41:30.0

In recent years, a growing number of electronic devices are being incorporated into automotive and other high reliability end products where the challenge is to make these devices more reliable. The package size of the devices is largely driven by the consumer industry with their sizes getting smaller making it harder to assemble and be reliable at the same time. For automotive and other high reliability electronics product, it is of the utmost priority to secure high reliability because it directly involves human life and safety. Challenges include selecting an appropriate solder alloy and having good reliability of the solder paste flux.

Koki Company LTD

Waste-Printed Circuit Board Recycling: Focusing on Preparing Polymer Composites and Geopolymers

Technical Library | 2021-06-07 19:03:05.0

The waste from end-of-life electrical and electronic equipment has become the fastest growing waste problem in the world. The difficult-to-treat waste-printed circuit boards (WPCBs), which are nearly 3−6 wt % of the total electronic waste, generate great environmental concern nowadays. For WPCB treatment and recycling, the mechanical−physical method has turned out to be more technologically and economically feasible. In this work, the mechanical−physical treatment and recycling technologies for WPCBs were investigated, and future research was directed as well. Removing electric and electronic components(EECs) from WPCBs is critical for their crushing and metal recovery; however, environmentally friendly and high-efficiency removal techniques need be developed. Concentrated metals rich in Cu, Al, Au, Pb, and Sn recovered from WPCBs need be further refined to add to their economic values. The low value added nonmetallic fraction of waste-printed circuit boards (NMF-WPCBs) accounts for approximately 60 wt % of the WPCBs. From the perspective of environmental management, a zero-waste approach to recycling them should be developed to gain values. Preparing polymer composites and geopolymers offers many advantages and has potential applications in various fields, especially as construction and building materials. However, the mechanical and thermal properties of NMF-WPCBs composites should be further improved for preparing polymer composites. Surface modification or filler blending could be applied to improve the interfacial comparability between NMF-WPCBs and the polymer matrix. The NMFWPCBs shows potential in preparing cement mortar and geological polymers, but the environmental safety resulting from metals needs to be taken into account. This study will provide a significant reference for the industrial recycling of NMF-WPCBs

Zhejiang University

If you bear the cost of your product's failure, shouldn't you have a say in ensuring it's success?

Technical Library | 2009-04-09 20:43:09.0

Evidence has come to light that increased solder process temperatures, specifically for lead free solder, are dramatically shortening life expectancy of components; failures do not show up during initial test, but much later on in the products life,

Electronic Controls Design Inc. (ECD)

How to choose the plug of anti static IC tube and its material

Technical Library | 2019-05-09 05:40:52.0

When the anti static ic tube is produced, it is empty at both ends. Therefore, before and after the electronic components are loaded into the plastic tube, the IC hoses need to be blocked at both ends. Generally, there are plastic nails and rubber stoppers.

Shenzhen Sewate Technology Co.,Ltd

Influence of Plating Quality on Reliability of Microvias

Technical Library | 2016-05-12 16:29:40.0

Advances in miniaturized electronic devices have led to the evolution of microvias in high density interconnect (HDI) circuit boards from single-level to stacked structures that intersect multiple HDI layers. Stacked microvias are usually filled with electroplated copper. Challenges for fabricating reliable microvias include creating strong interface between the base of the microvia and the target pad, and generating no voids in the electrodeposited copper structures. Interface delamination is the most common microvia failure due to inferior quality of electroless copper, while microvia fatigue life can be reduced by over 90% as a result of large voids, according to the authors’ finite element analysis and fatigue life prediction. This paper addresses the influence of voids on reliability of microvias, as well as the interface delamination issue.

CALCE Center for Advanced Life Cycle Engineering

  1 2 3 4 5 6 Next

end of life searches for Companies, Equipment, Machines, Suppliers & Information

fluid dispenser

Reflow Soldering 101 Training Course
2024 Eptac IPC Certification Training Schedule

Training online, at your facility, or at one of our worldwide training centers"
PCB Handling Machine with CE

High Throughput Reflow Oven
SMT spare parts

Low-cost, self-paced, online training on electronics manufacturing fundamentals