Technical Library: fuji part data (Page 1 of 1)

Fiducial Marks

Technical Library | 2019-06-17 15:09:43.0

Very often pick and place machines are programmed using CAD data. This data increases the accuracy, precision, and repeatability of its component placement objectives. CAD data makes fine pitch and small component assemblies repeatable, but cannot adjust to a particular board unless it is exactly the same size and shape of the original board used for programming. The process by which printed circuit boards (PCBs) are made only allows some minor changes inboard size and shape, but these small differences are enough for parts to be misplaced. For this reason we use fiducial marks to increase the chances of precise component alignment.

ACI Technologies, Inc.

A Unified CAD-PLM Architecture for Improving Electronics Design Productivity through Automation, Collaboration, and Cloud Computing

Technical Library | 2012-01-26 20:28:34.0

In electronics design, Computer Aided Design (CAD) tools manage part data in a logical schematic view (a part symbol) and a physical PCB view (a part footprint). Yet, a part has a third view, which CAD tools ignore – its supply data (Manufacturer part num

UCLA - Networked & Embedded Systems Laboratory

MMX™ Technology Architecture Overview

Technical Library | 1999-05-07 10:20:34.0

Media (video, audio, graphics, communication) applications present a unique opportunity for performance boost via use of Single Instruction Multiple Data (SIMD) techniques. While several of the computeintensive parts of media applications benefit from SIMD techniques, a significant portion of the code still is best suited for general purpose instruction set architectures. MMX™ technology extends the Intel Architecture (IA), the industry's leading general purpose processor architecture, to provide the benefits of SIMD for media applications.

Intel Corporation

Corrosion Resistant Servers for Free-Air Cooling Data Centers

Technical Library | 2016-11-10 17:37:35.0

The demand for compute capability is growing rapidly fueling the ever rising consumption of power by data centers the worldwide. This growth in power consumption presents a challenge to data center total cost of ownership. Free-air cooling is one of the industrial trends in reducing power consumption, the power usage effectiveness (PUE) ratio, and the total cost of ownership (TCO). Free-air cooling is a viable approach in many parts of the world where the air is reasonably clean. In Eastern China, the poor quality of air, high in particle and gaseous contamination, is a major obstacle to free-air cooling. Servers exposed to outside air blowing in to data centers will corrode and fail at high rate. The poor reliability of hardware increase TCO dramatically. This paper describes a corrosion resistant server design suitable for reliable operation in a free-air cooling data center located in Eastern China where the indoor air quality can be as poor as ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) severity level G3. An accelerated corrosion test method of verifying hardware reliability in the ASHRAE severity level G3 environment is also described.

IBM Corporation

AIM Tech Tip Article: Pretty Slick

Technical Library | 2022-06-20 21:01:37.0

We've been doing a lot of print testing in our lab. In our first set of published results, "The Impact of Reduced Solder Alloy Powder Size on Solder Paste Print Performance1" from IPC/APEX 2016, we revealed a hierarchy of input variables to maximize solder paste transfer efficiency and minimize variation. In that study, we used a fully-optioned stencil as part of the equipment set. In order to tease out the data we were looking for, we could not lose critical information to the noise of stencil-induced variations.

AIM Solder

IPC-1782 Standard for Traceability Supporting Counterfeit Components

Technical Library | 2018-01-04 11:05:34.0

Traceability has grown from being a specialized need for certain safety critical segments of the industry, to now being a recognized value-add tool for the industry as a whole. The perception of traceability data collection however persists as being a burden that may provide value only when the most rare and disastrous of events take place. Disparate standards have evolved in the industry, mainly dictated by large OEM companies in the market create confusion, as a multitude of requirements and definitions proliferate. The intent of the IPC-1782 project is to bring the whole principle and perception of traceability up to date. Traceability, as defined in this standard will represent the most effective quality tool available, becoming an intrinsic part of best practice operations, with the encouragement of automated data collection from existing manufacturing systems, integrating quality, reliability, predictive (routine, preventative, and corrective) maintenance, throughput, manufacturing, engineering and supply-chain data, reducing cost of ownership as well as ensuring timeliness and accuracy all the way from a finished product back through to the initial materials and granular attributes about the processes along the way.

Mentor Graphics

Understanding Circuit Material Performance Concerns for PCBs at Millimeter-Wave Frequencies

Technical Library | 2018-04-11 22:18:05.0

Millimeter-wave (mmWave) frequency applications are becoming more common. There are applications utilizing PCB technology at 60 GHz, 77 GHz and many other mmWave frequencies. When designing a PCB for mmWave frequency, the properties of the circuit materials need to be considered since they can be critical to the success of the application. Understanding the properties of circuit materials at these frequencies is very important.This paper will give an overview of which circuit material properties are important to mmWave frequency applications using PCBs. There will be data supplied which demonstrates why these properties are essential to the circuit material selection for mmWave applications. Some properties discussed will be dielectric constant (Dk) control, dissipation factor, moisture absorption, thickness control and TCDk (Temperature Coefficient of Dk). Measured comparisons will be shown for insertion loss and Dk versus frequency for different types of circuit materials up to 110 GHz. As part of the test data, the impact on circuit performance due to TCDk and moisture absorption will be shown at mmWave frequencies.

Rogers Corporation

Laser Wire Stripping for Medical Device Manufacturing Applications

Technical Library | 2017-09-25 10:36:52.0

Laser wire stripping was developed by NASA in the 1970s as part of the Space Shuttle program. The technology made it possible to use smaller sized wires with thinner insulations, without risk of the damage that can be caused by traditional mechanical wire stripping methods. Laser wire stripping technology was commercialized in the 1990s and was initially used for aerospace and defense applications. Laser wire stripping then grew significantly when the consumer electronics market exploded as lasers became the only stripping solution for the tiny data cables found in laptops, mobile phones and other consumer electronics products. Another large industry that has adopted laser wire stripping methods, and for good reason, is high-end medical device manufacturing.

Schleuniger, Inc.

ASSESSMENT OF ACCRUED THERMO-MECHANICAL DAMAGE IN LEADFREE PARTS DURING FIELD-EXPOSURE TO MULTIPLE ENVIRONMENTS

Technical Library | 2022-10-11 20:29:31.0

Electronic assemblies deployed in harsh environments may be subjected to multiple thermal environments during the use-life of the equipment. Often the equipment may not have any macro-indicators of damage such as cracks or delamination. Quantiication of thermal environments during use-life is often not feasible because of the data-capture and storage requirements, and the overhead on core-system functionality. There is need for tools and techniques to quantify damage in deployed systems in absence of macro-indicators of damage without knowledge of prior stress history. The presented PHM framework is targeted towards high reliability applications such as avionic and space systems. In this paper, Sn3.0Ag0.5Cu alloy packages have been subjected to multiple thermal cycling environments including -55 to 125C and 0 to 100C. Assemblies investigated include area-array packages soldered on FR4 printed circuit cards. The methodology involves the use of condition monitoring devices, for gathering data on damage pre-cursors at periodic intervals. Damage-state interrogation technique has been developed based on the Levenberg-Marquardt Algorithm in conjunction with the microstructural damage evolution proxies. The presented technique is applicable to electronic assemblies which have been deployed on one thermal environment, then withdrawn from service and targeted for redeployment in a different thermal environment. Test cases have been presented to demonstrate the viability of the technique for assessment of prior damage, operational readiness and residual life for assemblies exposed to multiple thermo-mechanical environments. Prognosticated prior damage and the residual life show good correlation with experimental data, demonstrating the validity of the presented technique for multiple thermo-mechanical environments.

Auburn University

WHY CLEAN A NO-CLEAN FLUX

Technical Library | 2020-11-04 17:57:41.0

Residues present on circuit boards can cause leakage currents if not controlled and monitored. How "Clean is Clean" is neither easy nor cheap to determine. Most OEMs use analytical methods to assess the risk of harmful residues. The levels that can be associated with clean or dirty are typically determined based on the exposed environment where the part will be deployed. What is acceptably clean for one segment of the industry may be unacceptable for more demanding segments. As circuit assemblies increase in density, understanding cleanliness data becomes more challenging. The risk of premature failure or improper function is typically site specific. The problem is that most do not know how to measure or define cleanliness nor can they recognize process problems related to residues. A new site specific method has been designed to run performance qualifications on boards built with specific soldering materials, reflow settings and cleaning methods. High impedance measurements are performed on break off coupons designed with components geometries used to build the assembly. The test method provides a gauge of potential contamination sources coming from the assembly process that can contribute to electrochemical migration.

KYZEN Corporation

  1  

fuji part data searches for Companies, Equipment, Machines, Suppliers & Information

Selective soldering solutions with Jade soldering machine

Benchtop Fluid Dispenser
Selective soldering solutions with Jade soldering machine

Reflow Soldering 101 Training Course
2024 Eptac IPC Certification Training Schedule

World's Best Reflow Oven Customizable for Unique Applications