Technical Library: functional test capacitors (Page 2 of 6)

Cracking Problems in Low-Voltage Chip Ceramic Capacitors

Technical Library | 2022-09-25 20:03:37.0

Cracking remains the major reason of failures in multilayer ceramic capacitors (MLCCs) used in space electronics. Due to a tight quality control of space-grade components, the probability that as manufactured capacitors have cracks is relatively low, and cracking is often occurs during assembly, handling and the following testing of the systems. Majority of capacitors with cracks are revealed during the integration and testing period, but although extremely rarely, defective parts remain undetected and result in failures during the mission. Manual soldering and rework that are often used during low volume production of circuit boards for space aggravate this situation. Although failures of MLCCs are often attributed to the post-manufacturing stresses, in many cases they are due to a combination of certain deviations in the manufacturing processes that result in hidden defects in the parts and excessive stresses during assembly and use. This report gives an overview of design, manufacturing and testing processes of MLCCs focusing on elements related to cracking problems. The existing and new screening and qualification procedures and techniques are briefly described and assessed by their effectiveness in revealing cracks. The capability of different test methods to simulate stresses resulting in cracking, mechanisms of failures in capacitors with cracks, and possible methods of selecting capacitors the most robust to manual soldering stresses are discussed.

NASA Office Of Safety And Mission Assurance

Principles of Analog In-Circuit Testing

Technical Library | 2012-12-26 14:18:24.0

Passive components including resistors, capacitors, inductors, and circuit-protection devices compose the highest percentage of all devices that are populated on today’s PCB assemblies. However, the successful isolation and testing of these components during ICT is perhaps the most challenging and the least understood of all modern-day validation practices.

Teradyne

Flexible Termination - Reliability in Stringent Environments

Technical Library | 2009-05-21 13:41:05.0

Failure due to board flex cracks persists as the dominant failure mode in multi-layer ceramic capacitors (MLCC). (...) This paper is intended to show the impact of temperature cycling, high-temperature life tests, and multiple bend exposures to the MLCC with this flexible termination.

KEMET Electronics Corporation

SMD Naked Capacitors Technologies For Severe Application Environments And Circuit Functions

Technical Library | 2011-07-07 03:37:13.0

The demand for miniaturized electronic equipment and fully-automated assembly lines for mass-production of new products require the availability of a complete range of SMD components

KEMET Electronics Corporation

Case study: Improving PCBA Yield

Technical Library | 2010-04-22 09:11:54.0

Current situation: Present Rejection = 18%. Sigma Level = 2.42 Scope of Project: Vendor PCB Assembly to Functional Testing of PCBA

Larsen Toubro Medical Equipment & Systems Ltd

Design for Testability (DFT) to Overcome Functional Board Test Complexities in Manufacturing Test

Technical Library | 2018-06-20 13:11:57.0

Manufacturers test to ensure that the product is built correctly. Shorts, opens, wrong or incorrectly inserted components, even catastrophically faulty components need to be flagged, found and repaired. When all such faults are removed, however, functional faults may still exist at normal operating speed, or even at lower speeds. Functional board test (FBT) is still required, a process that still relies on test engineers’ understanding of circuit functionality and manually developed test procedures. While functional automatic test equipment (ATE) has been reduced considerably in price, FBT test costs have not been arrested. In fact, FBT is a huge undertaking that can take several weeks or months of test engineering development, unacceptably stretching time to market. The alternative, of selling products that have not undergone comprehensive FBT is equally, if not more, intolerable.

A.T.E. Solutions, Inc.

Design for Testability (DFT) to Overcome Functional Board Test Complexities in Manufacturing Test

Technical Library | 2021-05-20 13:45:49.0

Manufacturers test to ensure that the product is built correctly. Shorts, opens, wrong or incorrectly inserted components, even catastrophically faulty components need to be flagged, found and repaired. When all such faults are removed, however, functional faults may still exist at normal operating speed, or even at lower speeds. Functional board test (FBT) is still required, a process that still relies on test engineers' understanding of circuit functionality and manually developed test procedures. While functional automatic test equipment (ATE) has been reduced considerably in price, FBT test costs have not been arrested. In fact, FBT is a huge undertaking that can take several weeks or months of test engineering development, unacceptably stretching time to market. The alternative, of selling products that have not undergone comprehensive FBT is equally, if not more, intolerable.

A.T.E. Solutions, Inc.

Rapid Deployment of Automated Test-System for High-Volume Automotive USB-C Hub

Technical Library | 2021-05-20 13:41:30.0

Adoption and integration of USB-C chargers and hubs in automotive applications is driving a need for an updated approach to production tests due to USB-C's connector density, high bandwidth, and high power. We introduce a new paradigm in test-system development, micro-FCT (micro Functional Test), and demonstrate developing and deploying of an end-of-line (EOL) functional test-system which meets the strict automotive test requirements for a USB-C hub. Specification to deployment of the test-system was completed in less than 10-weeks, and test cycle time was 1/10th of the customer's requirements

Acroname

Methods Used In The Detection Of Counterfeit Electronic Components

Technical Library | 2022-10-04 16:43:10.0

In this paper I will discuss the different methods and equipment used to detect counterfeit electronic parts, specifically integrated circuits as well as demonstrate some of the "red flags" that help to identify a part as being suspected counterfeit. We will begin with the initial receipt of the parts and the examination of the outer packaging, the basic visual inspection of the parts, the visual inspection and documentation at high magnification, permanency marking, blacktop test, scrape test, XRF (RoHS), decapsulation, X-ray, basic electrical testing, C-SAM, full function testing and limited function testing.

Electro-Comp Tape and Reel Services, LLC

Cracks: The Hidden Defect

Technical Library | 2019-08-15 13:31:52.0

Cracks in ceramic chip capacitors can be introduced at any process step during surface mount assembly. Thermal shock has become a "pat" answer for all of these cracks, but about 75 to 80% originate from other sources. These sources include pick and place machine centering jaws, vacuum pick up bit, board depanelization, unwarping boards after soldering, test fixtures, connector insulation, final assembly, as well as defective components. Each source has a unique signature in the type of crack that it develops so that each can be identified as the source of error.

AVX Corporation


functional test capacitors searches for Companies, Equipment, Machines, Suppliers & Information