Technical Library | 2023-09-15 09:49:47.0
Explore our I.C.T IR Curing Oven Introduction to optimize your PCB assembly process. Learn how our cutting-edge ovens can improve efficiency and reliability in curing processes.
Technical Library | 2010-02-10 23:50:23.0
The electronics industry has recently undertaken the transition to lead-free processing as a direct consequence of the RoHS directive, which came into force in July 2006. However, this is unlikely to be the last transition required since the European Solvent Emissions Directive, 1999 is starting to be implemented and enforced by national governments. This is resulting in pressure on larger manufacturers, currently emitting more than 5 tonnes of solvent vapour per annum to take steps to limit and reduce their emissions.
Technical Library | 2013-02-07 17:01:46.0
Silicone contamination is known to have a negative impact on assembly processes such as soldering, adhesive bonding, coating, and wire bonding. In particular, silicone is known to cause de-wetting of materials from surfaces and can result in adhesive failures. There are many sources for silicone contamination with common sources being mold releases or lubricants on manufacturing tools, offgassing during cure of silicone paste adhesives, and residue from pressure sensitive tape. This effort addresses silicone contamination by quantifying adhesive effects under known silicone contaminations. The first step in this effort identified an FT-IR spectroscopic detection limit for surface silicone utilizing the area under the 1263 cm-1 (Si-CH3) absorbance peak as a function of concentration (µg/cm2). The next step was to pre-contaminate surfaces with known concentrations of silicone oil and assess the effects on surface wetting and adhesion. This information will be used to establish guidelines for silicone contamination in different manufacturing areas within Harris Corporation... First published in the 2012 IPC APEX EXPO technical conference proceedings.
1 |