Technical Library: loctite solder paste (Page 10 of 18)

Evaluation of Under-Stencil Cleaning Papers

Technical Library | 2016-08-04 14:33:23.0

Solder paste screen printing is known to be one of the most difficult processes to quality assure in Printed Board Assembly (PBA) manufacturing. An important process step in solder paste screen printing is the under stencil cleaning process and one of the key materials in this process is the cleaning paper1. This, often neglected, material affects the cleaning process and thereby also the print quality. It is therefore important to perform tests of different cleaning papers before one could be chosen. This article describes how cleaning papers can be tested and it also tells how big differences it can be between different materials.

Ericsson AB

DOE for Process Validation Involving Numerous Assembly Materials and Test Methods.

Technical Library | 2010-03-18 14:02:03.0

Selecting products that have been qualified by industry standards for use in printed circuit board assembly processes is an accepted best practice. That products which have been qualified, when used in combinations not specifically qualified, may have resultant properties detrimental to assembly function though, is often not adequately understood. Printed circuit boards, solder masks, soldering materials (flux, paste, cored wire, rework flux, paste flux, etc.), adhesives, and inks, when qualified per industry standards, are qualified using very specific test methods which may not adequately mimic the assembly process ultimately used.

Trace Laboratories

Effect Of Vacuum Reflow On Solder Joint Voiding In Bumped Components

Technical Library | 2021-04-21 15:10:16.0

Voids affect the thermal characteristics and mechanical properties of a solder joint, thereby affecting the reliability of the solder interconnect. The automotive sector in particular is requiring the mitigation of solder voids in various electronic control modules to the minimum possible level. Earlier research efforts performed to decrease voids involved varying the reflow profile, paste deposit, paste alloy composition, stencil aperture, and thickness. Due to the various advantages they offer, the use of Ball Grid Array packages is common across all industry sectors. They are also prone to process voiding issues. This study was performed to determine if vacuum assisted reflow process can help alleviate the voids in area array solder joints. Test parameters in this study largely focused on vacuum pressure level and vacuum dwell time.

Auburn University

Effect Of Vacuum Reflow On Solder Joint Voiding In Bumped Components

Technical Library | 2022-10-31 18:35:40.0

Voids affect the thermal characteristics and mechanical properties of a solder joint, thereby affecting the reliability of the solder interconnect. The automotive sector in particular is requiring the mitigation of solder voids in various electronic control modules to the minimum possible level. Earlier research efforts performed to decrease voids involved varying the reflow profile, paste deposit, paste alloy composition, stencil aperture, and thickness. Due to the various advantages they offer, the use of Ball Grid Array packages is common across all industry sectors. They are also prone to process voiding issues. This study was performed to determine if vacuum assisted reflow process can help alleviate the voids in area array solder joints. Test parameters in this study largely focused on vacuum pressure level and vacuum dwell time.

Auburn University

Creating Solder Joint Reliability with SnCu Based Solders Some Practical Experiences

Technical Library | 2009-01-15 00:42:58.0

Tin-silver-copper has received much publicity in recent years as the lead-free solder of choice. SAC305 was endorsed by the IPC Solder Value Product Council in the United States as the preferred option for SMT assembly; most assemblers have transitioned to this alloy for their solder paste requirements. The SAC305 alloy due to its 3.0% content of silver is expensive when compared to traditional 63/37 for this reason many wave assemblers are opting for less costly options such as tin-copper based solders for their wave, selective and dip tinning operations.

Kester

Head-in-Pillow BGA Defects

Technical Library | 2009-11-05 11:17:32.0

Head-in-pillow (HiP), also known as ball-and-socket, is a solder joint defect where the solder paste deposit wets the pad, but does not fully wet the ball. This results in a solder joint with enough of a connection to have electrical integrity, but lacking sufficient mechanical strength. Due to the lack of solder joint strength, these components may fail with very little mechanical or thermal stress. This potentially costly defect is not usually detected in functional testing, and only shows up as a failure in the field after the assembly has been exposed to some physical or thermal stress.

AIM Solder

Step Stencil design when 01005 and 0.3mm pitch uBGA's coexist with RF Shields

Technical Library | 2023-07-25 16:50:02.0

Some of the new handheld communication devices offer real challenges to the paste printing process. Normally, there are very small devices like 01005 chip components as well as 0.3 mm pitch uBGA along with other devices that require higher deposits of solder paste. Surface mount connectors or RF shields with coplanarity issues fall into this category. Aperture sizes for the small devices require a stencil thickness in the 50 to 75 um (2-3 mils) range for effective paste transfer whereas the RF shield and SMT connector would like at least 150 um (6 mils) paste height. Spacing is too small to use normal step stencils. This paper will explore a different type of step stencil for this application; a "Two-Print Stencil Process" step stencil. Here is a brief description of a "Two-Print Stencil Process". A 50 to 75 um (2-3 mils) stencil is used to print solder paste for the 01005, 0.3 mm pitch uBGA and other fine pitch components. While this paste is still wet a second in-line stencil printer is used to print all other components using a second thicker stencil. This second stencil has relief pockets on the contact side of the stencil any paste was printed with the first stencil. Design guidelines for minimum keep-out distances between the relief step, the fine pitch apertures, and the RF Shields apertures as well relief pocket height clearance of the paste printed by the first print stencil will be provided.

Photo Stencil LLC

THE EFFECT OF VACUUM REFLOW PROCESSING ON SOLDER JOINT VOIDING AND THERMAL FATIGUE RELIABILITY

Technical Library | 2023-01-17 17:16:43.0

A test program was developed to evaluate the effectiveness of vacuum reflow processing on solder joint voiding and subsequent thermal cycling performance. Area array package test vehicles were assembled using conventional reflow processing and a solder paste that generated substantial void content in the solder joints. Half of the population of test vehicles then were re-processed (reflowed) using vacuum reflow. Transmission x-ray inspection showed a significant reduction in solder voiding after vacuum processing. The solder attachment reliability of the conventional and vacuum reflowed test vehicles was characterized and compared using two different accelerated thermal cycling profiles. The thermal cycling results are discussed in terms of the general impact of voiding on solder thermal fatigue reliability, results from the open literature, and the evolving industry standards for solder voiding. Recommendations are made for further work based on other void reduction methods and additional reliability studies.

Acroname

QUANTIFYING THE IMPROVEMENTS IN THE SOLDER PASTE PRINTING PROCESS FROM STENCIL NANOCOATINGS AND ENGINEERED UNDER WIPE SOLVENTS

Technical Library | 2023-05-22 17:46:29.0

Over the past several years, much research has been performed and published on the benefits of stencil nano-coatings and solvent under wipes. The process improvements are evident and well-documented in terms of higher print and end-of-line yields, in improved print volume repeatability, in extended under wipe intervals, and in photographs of the stencil's PCB-seating surface under both white and UV light. But quantifying the benefits using automated Solder Paste Inspection (SPI) methods has been elusive at best. SPI results using these process enhancements typically reveal slightly lower paste transfer efficiencies and less variation in print volumes to indicate crisper print definition. However, the improvements in volume data do not fully account for the overall improvements noted elsewhere in both research and in production.

KYZEN Corporation

Fill the Void IV: Elimination of Inter-Via Voiding

Technical Library | 2019-10-10 00:26:28.0

Voids are a plague to our electronics and must be eliminated! Over the last few years we have studied voiding in solder joints and published three technical papers on methods to "Fill the Void." This paper is part four of this series. The focus of this work is to mitigate voids for via in pad circuit board designs. Via holes in Quad Flat No-Lead (QFN) thermal pads create voiding issues. Gasses can come out of via holes and rise into the solder joint creating voids. Solder can also flow down into the via holes creating gaps in the solder joint. One method of preventing this is via plugging. Via holes can be plugged, capped, or left open. These via plugging options were compared and contrasted to each other with respect to voiding. Another method of minimizing voiding is through solder paste stencil design. Solder paste can be printed around the via holes with gas escape routes. This prevents gasses from via holes from being trapped in the solder joint. Several stencil designs were tested and voiding performance compared and contrasted. In many cases voiding will be reduced only if a combination of mitigation strategies are used. Recommendations for combinations of via hole plugging and stencil design are given. The aim of this paper is to help the reader to "Fill the Void."

FCT ASSEMBLY, INC.


loctite solder paste searches for Companies, Equipment, Machines, Suppliers & Information