Technical Library: solder ball bond (Page 2 of 9)

Mechanical stress test for component solder joints and bonding wires

Technical Library | 2016-08-24 06:15:35.0

From consumer electronics to systems control, automotive technology to aviation and aerospace – today, electronics are absolutely essential in many sectors. They increasingly replace mechanical components, eliminating wear and tear and thereby extending the service life. What is easily forgotten in this regard is that electronics are also subject to the laws of mechanics. Mechanical test equipment is crucial to test components for the secure hold of welded, soldered or adhesive bonds. A new, mechanically intricate test probe with universal clamping jaws, that can even grasp the individual bonding wires, is in line with the trend toward ever smaller components. Serving as an actuator for these is a micro drive that can be precisely controlled using a miniaturised motion controller to relieve the control unit in the test device.

XYZTEC bv

An investigation into low temperature tin-bismuth and tin-bismuth-silver lead-free alloy solder pastes for electronics manufacturing applications

Technical Library | 2013-01-24 19:16:35.0

The electronics industry has mainly adopted the higher melting point Sn3Ag0.5Cu solder alloys for lead-free reflow soldering applications. For applications where temperature sensitive components and boards are used this has created a need to develop low melting point lead-free alloy solder pastes. Tin-bismuth and tin-bismuth-silver containing alloys were used to address the temperature issue with development done on Sn58Bi, Sn57.6Bi0.4Ag, Sn57Bi1Ag lead-free solder alloy pastes. Investigations included paste printing studies, reflow and wetting analysis on different substrates and board surface finishes and head-in-pillow paste performance in addition to paste-in-hole reflow tests. Voiding was also investigated on tin-bismuth and tin-bismuth-silver versus Sn3Ag0.5Cu soldered QFN/MLF/BTC components. Mechanical bond strength testing was also done comparing Sn58Bi, Sn37Pb and Sn3Ag0.5Cu soldered components. The results of the work are reported.

Christopher Associates Inc.

High Reliability and High Throughput Ball Bumping Process Solution – Solder Joint Encapsulant Adhesives

Technical Library | 2018-04-05 10:40:43.0

The miniaturization of microchips is always driving force for revolution and innovation in the electronic industry. When the pitch of bumps is getting smaller and smaller the ball size has to be gradually reduced. However, the reliability of smaller ball size is getting weaker and weaker, so some traditional methods such as capillary underfilling, corner bonding and edge bonding process have been being implemented in board level assembly process to enhance drop and thermal cycling performance. These traditional processes have been increasingly considered to be bottleneck for further miniaturization because the completion of these processes demands more space. So the interest of eliminating these processes has been increased. To meet this demand, YINCAE has developed solder joint encapsulant adhesives for ball bumping applications to enhance solder joint strength resulting in improving drop and thermal cycling performance to eliminate underfilling, edge bonding or corner bonding process in the board level assembly process. In this paper we will discuss the ball bumping process, the reliability such as strength of solder joints, drop test performance and thermal cycling performance.

YINCAE Advanced Materials, LLC.

Copper Wire Bond Failure Mechanisms.

Technical Library | 2014-07-24 16:26:34.0

Wire bonding a die to a package has traditionally been performed using either aluminum or gold wire. Gold wire provides the ability to use a ball and stitch process. This technique provides more control over loop height and bond placement. The drawback has been the increasing cost of the gold wire. Lower cost Al wire has been used for wedge-wedge bonds but these are not as versatile for complex package assembly. The use of copper wire for ball-stitch bonding has been proposed and recently implemented in high volume to solve the cost issues with gold. As one would expect, bonding with copper is not as forgiving as with gold mainly due to oxide growth and hardness differences. This paper will examine the common failure mechanisms that one might experience when implementing this new technology.

DfR Solutions

Challenges on ENEPIG Finished PCBs: Gold Ball Bonding and Pad Metal Lift

Technical Library | 2017-09-07 13:56:11.0

As a surface finish for PCBs, Electroless Nickel/Electroless Palladium/Immersion Gold (ENEPIG) was selected over Electroless Nickel/Immersion Gold (ENIG) for CMOS image sensor applications with both surface mount technology (SMT) and gold ball bonding processes in mind based on the research available on-line. Challenges in the wire bonding process on ENEPIG with regards to bondability and other plating related issues are summarized.

Teledyne DALSA

Approaches to Overcome Nodules and Scratches on Wire Bondable Plating on PCBs

Technical Library | 2020-08-27 01:22:45.0

Initially adopted internal specifications for acceptance of printed circuit boards (PCBs) used for wire bonding was that there were no nodules or scratches allowed on the wirebond pads when inspected under 20X magnification. The nodules and scratches were not defined by measurable dimensions and were considered to be unacceptable if there was any sign of a visual blemish on wire-bondable features. Analysis of the yield at a PCB manufacturer monitored monthly for over two years indicated that the target yield could not be achieved, and the main reasons for yield loss were due to nodules and scratches on the wirebonding pads. The PCB manufacturer attempted to eliminate nodules and scratches. First, a light-scrubbing step was added after electroless copper plating to remove any co-deposited fine particles that acted as a seed for nodules at the time of copper plating. Then, the electrolytic copper plating tank was emptied, fully cleaned, and filtered to eliminate the possibility of co-deposited particles in the electroplating process. Both actions greatly reduced the density of the nodules but did not fully eliminate them. Even though there was only one nodule on any wire-bonding pad, the board was still considered a reject. To reduce scratches on wirebonding pads, the PCB manufacturer utilized foam trays after routing the boards so that they did not make direct contact with other boards. This action significantly reduced the scratches on wire-bonding pads, even though some isolated scratches still appeared from time to time, which caused the boards to be rejected. Even with these significant improvements, the target yield remained unachievable. Another approach was then taken to consider if wire bonding could be successfully performed over nodules and scratches and if there was a dimensional threshold where wire bonding could be successful. A gold ball bonding process called either stand-off-stitch bonding (SSB) or ball-stitch-on-ball bonding (BSOB) was used to determine the effects of nodules and scratches on wire bonds. The dimension of nodules, including height, and the size of scratches, including width, were measured before wire bonding. Wire bonding was then performed directly on various sizes of nodules and scratches on the bonding pad, and the evaluation of wire bonds was conducted using wire pull tests before and after reliability testing. Based on the results of the wire-bonding evaluation, the internal specification for nodules and scratches for wirebondable PCBs was modified to allow nodules and scratches with a certain height and a width limitation compared to initially adopted internal specifications of no nodules and no scratches. Such an approach resulted in improved yield at the PCB manufacturer.

Teledyne DALSA

Understanding the Effect of Process Changes and Flux Chemistry on Mid-Chip Solder Balling

Technical Library | 2016-11-30 21:30:50.0

Mid-chip solder balling is a defect typically associated with solder paste exhibiting poor hot slump and/or insufficient wetting during the reflow soldering process, resulting in paste flowing under the component or onto the solder resist. Once molten, this solder is compressed and forced to the side of the component, causing mid-chip solder balling.This paper documents the experimental work performed to further understand the impact on mid-chip solder balling from both the manufacturing process and the flux chemistry.

Henkel Electronic Materials

Stereo Vision Based Automated Solder Ball Height Detection

Technical Library | 2015-04-16 16:11:43.0

Solder ball height inspection is essential to the detection of potential connectivity issues in semi-conductor units. Current ball height inspection tools such as laser profiling, fringe projection and confocal microscopy are expensive, require complicated setup and are slow, which makes them difficult to use in a real-time manufacturing setting. Therefore, a reliable, in-line ball height measurement method is needed for inspecting units undergoing assembly. (...) In this paper, an automatic, stereo vision based, in-line ball height inspection method is presented. The proposed method includes an imaging setup together with a computer vision algorithm for reliable, in-line ball height measurement.

Intel Corporation

Gold Stud Bump Flip Chip Bonding on Molded Interconnect Devices

Technical Library | 2015-09-23 22:08:32.0

A molded interconnect device (MID) is an injection molded thermoplastic substrate which incorporates a conductive circuit pattern and integrates both mechanical and electrical functions. (...) Flip chip bonding of bare die on MID can be employed to fully utilize MID’s advantage in device miniaturization. Compared to the traditional soldering process, thermo-compression bonding with gold stud bumps provides a clear advantage in its fine pitch capability. However, challenges also exist. Few studies have been made on thermocompression bonding on MID substrate, accordingly little information is available on process optimization, material compatibility and bonding reliability. Unlike solder reflow, there is no solder involved and no “self-alignment,” therefore the thermo-compression bonding process is significantly more dependent on the capability of the machine for chip assembly alignment.

Flex (Flextronics International)

Soldering to Gold Over Nickel Surfaces

Technical Library | 1999-05-07 11:28:39.0

There are many things that can go wrong when soldering to gold plate over nickel surfaces. First of all, we know that gold and solder are not good friends, as any time solder comes into contact with gold, something seems to go wrong. Either the solder bonds to the gold and eventually pulls off as the tin and gold cross-migrate, leaving voids; or the solder completely removes the gold and is expected to bond to the metal which was under the gold.

Kester


solder ball bond searches for Companies, Equipment, Machines, Suppliers & Information