Technical Library: solder paste cookson electronics (Page 4 of 7)

Cleaning PCBs in Electronics: Understanding Today's Needs

Technical Library | 2022-02-16 15:34:32.0

Because of the phase-out of CFCs and HCFCs, standard solder pastes and fluxes evolved from RA and RMA fluxes to No-Clean, to low residue No-Clean, to very low residue No-Clean. Many companies came out with their cleaning solutions, aqueous and semi-aqueous, with each product release being more innovative than the previous one. Unfortunately for most of the suppliers of cleaners, two other trends appeared; lead-free soldering and the progressive miniaturization of electronic devices

Inventec Performance Chemicals

Divergence in Test Results Using IPC Standard SIR and Ionic Contamination Measurements

Technical Library | 2017-07-13 16:16:27.0

Controlled humidity and temperature controlled surface insulation resistance (SIR) measurements of flux covered test vehicles, subject to a direct current (D.C.) bias voltage are recognized by a number of global standards organizations as the preferred method to determine if no clean solder paste and wave soldering flux residues are suitable for reliable electronic assemblies. The IPC, Japanese Industry Standard (JIS), Deutsches Institut fur Normung (DIN) and International Electrical Commission (IEC) all have industry reviewed standards using similar variations of this measurement. (...) This study will compare the results from testing two solder pastes using the IPC-J-STD-004B, IPC TM-650 2.6.3.7 surface insulation resistance test, and IPC TM-650 2.3.25 in an attempt to investigate the correlation of ROSE methods as predictors of electronic assembly electrical reliability.

Alpha Assembly Solutions

Effect Of Vacuum Reflow On Solder Joint Voiding In Bumped Components

Technical Library | 2021-04-21 15:10:16.0

Voids affect the thermal characteristics and mechanical properties of a solder joint, thereby affecting the reliability of the solder interconnect. The automotive sector in particular is requiring the mitigation of solder voids in various electronic control modules to the minimum possible level. Earlier research efforts performed to decrease voids involved varying the reflow profile, paste deposit, paste alloy composition, stencil aperture, and thickness. Due to the various advantages they offer, the use of Ball Grid Array packages is common across all industry sectors. They are also prone to process voiding issues. This study was performed to determine if vacuum assisted reflow process can help alleviate the voids in area array solder joints. Test parameters in this study largely focused on vacuum pressure level and vacuum dwell time.

Auburn University

Effect Of Vacuum Reflow On Solder Joint Voiding In Bumped Components

Technical Library | 2022-10-31 18:35:40.0

Voids affect the thermal characteristics and mechanical properties of a solder joint, thereby affecting the reliability of the solder interconnect. The automotive sector in particular is requiring the mitigation of solder voids in various electronic control modules to the minimum possible level. Earlier research efforts performed to decrease voids involved varying the reflow profile, paste deposit, paste alloy composition, stencil aperture, and thickness. Due to the various advantages they offer, the use of Ball Grid Array packages is common across all industry sectors. They are also prone to process voiding issues. This study was performed to determine if vacuum assisted reflow process can help alleviate the voids in area array solder joints. Test parameters in this study largely focused on vacuum pressure level and vacuum dwell time.

Auburn University

Improved Flux Reliability of Lead-Free Solder Alloy Solder Paste Formulated with Rosin and Anti-Crack Resin for Automotive and Other High Reliability Applications

Technical Library | 2018-09-05 21:41:30.0

In recent years, a growing number of electronic devices are being incorporated into automotive and other high reliability end products where the challenge is to make these devices more reliable. The package size of the devices is largely driven by the consumer industry with their sizes getting smaller making it harder to assemble and be reliable at the same time. For automotive and other high reliability electronics product, it is of the utmost priority to secure high reliability because it directly involves human life and safety. Challenges include selecting an appropriate solder alloy and having good reliability of the solder paste flux.

Koki Company LTD

Best Practices Reflow Profiling for Lead-Free SMT Assembly

Technical Library | 2013-06-05 23:14:44.0

The combination of higher lead-free process temperatures, smaller print deposits, and temperature restraints on electrical components has created difficult challenges in optimizing the reflow process. Not only are the electronic components and the PWB at risk, but the ability to achieve a robust solder joint becomes difficult, especially if the PCB is thermally massive. In addition, the constant miniaturization of electronic components, hence smaller solder paste deposits, may require the use of smaller particle-sized powders (...) This paper is a summary of best practices in optimizing the reflow process to meet these challenges of higher reflow temperatures, smaller print deposits, decreased powder particle size, and their affect on the reflow process.

Indium Corporation

Fill the Void IV: Elimination of Inter-Via Voiding

Technical Library | 2019-10-10 00:26:28.0

Voids are a plague to our electronics and must be eliminated! Over the last few years we have studied voiding in solder joints and published three technical papers on methods to "Fill the Void." This paper is part four of this series. The focus of this work is to mitigate voids for via in pad circuit board designs. Via holes in Quad Flat No-Lead (QFN) thermal pads create voiding issues. Gasses can come out of via holes and rise into the solder joint creating voids. Solder can also flow down into the via holes creating gaps in the solder joint. One method of preventing this is via plugging. Via holes can be plugged, capped, or left open. These via plugging options were compared and contrasted to each other with respect to voiding. Another method of minimizing voiding is through solder paste stencil design. Solder paste can be printed around the via holes with gas escape routes. This prevents gasses from via holes from being trapped in the solder joint. Several stencil designs were tested and voiding performance compared and contrasted. In many cases voiding will be reduced only if a combination of mitigation strategies are used. Recommendations for combinations of via hole plugging and stencil design are given. The aim of this paper is to help the reader to "Fill the Void."

FCT ASSEMBLY, INC.

Optimising Solder Paste Volume for Low Temperature Reflow of BGA Packages

Technical Library | 2020-09-23 21:37:25.0

The need to minimise thermal damage to components and laminates, to reduce warpage-induced defects to BGA packages, and to save energy, is driving the electronics industry towards lower process temperatures. For soldering processes the only way that temperatures can be substantially reduced is by using solders with lower melting points. Because of constraints of toxicity, cost and performance, the number of alloys that can be used for electronics assembly is limited and the best prospects appear to be those based around the eutectic in the Bi-Sn system, which has a melting point of about 139°C. Experience so far indicates that such Bi-Sn alloys do not have the mechanical properties and microstructural stability necessary to deliver the reliability required for the mounting of BGA packages. Options for improving mechanical properties with alloying additions that do not also push the process temperature back over 200°C are limited. An alternative approach that maintains a low process temperature is to form a hybrid joint with a conventional solder ball reflowed with a Bi-Sn alloy paste. During reflow there is mixing of the ball and paste alloys but it has been found that to achieve the best reliability a proportion of the ball alloy has to be retained in the joint, particular in the part of the joint that is subjected to maximum shear stress in service, which is usually the area near the component side. The challenge is then to find a reproducible method for controlling the fraction of the joint thickness that remains as the original solder ball alloy. Empirical evidence indicates that for a particular combination of ball and paste alloys and reflow temperature the extent to which the ball alloy is consumed by mixing with the paste alloy is dependent on the volume of paste deposited on the pad. If this promising method of achieving lower process temperatures is to be implemented in mass production without compromising reliability it would be necessary to have a method of ensuring the optimum proportion of ball alloy left in the joint after reflow can be consistently maintained. In this paper the author explains how the volume of low melting point alloy paste that delivers the optimum proportion of retained ball alloy for a particular reflow temperature can be determined by reference to the phase diagrams of the ball and paste alloys. The example presented is based on the equilibrium phase diagram of the binary Bi-Sn system but the method could be applied to any combination of ball and paste alloys for which at least a partial phase diagram is available or could be easily determined.

Nihon Superior Co. Ltd

Design and Process Development for the Assembly of 01005 Passive Components

Technical Library | 2018-03-05 11:22:48.0

Growing demands for smaller electronic assemblies has resulted in reduced sizes of passive components, requiring the introduction of newer components, such as the 01005 devices. Component miniaturization presents significant challenges to the traditional surface mount assembly process. A successful assembly solution for these 01005 devices should be repeatable and reproducible, and should include guidelines for (i) the selection of solder paste and (ii) appropriate stencil and substrate pad design, and should ensure strict process control standards.

Sanmina-SCI

SMT Under Stencil Wiper Rolls

Technical Library | 2019-06-03 21:07:34.0

The objective of this White Paper is to provide users of the above products in the electronics industry a clear understanding of the different types of stencil cleaning paper/fabrics that are currently available. Fine pitch applications are more the norm now and so the performance of stencil cleaning rolls is more critical than ever before. This White Paper will give solder paste stencil printing engineers and purchasing professionals an insight into the main products on the market, thereby enabling them to make informed decisions.

Swiftmode Malaysia (Penang) Sdn Bhd


solder paste cookson electronics searches for Companies, Equipment, Machines, Suppliers & Information

Nordson Electronics Solutions
Nordson Electronics Solutions

Nordson Electronics Solutions makes reliable electronics an everyday reality. Our ASYMTEK, MARCH, and SELECT brands deliver precision fluid dispensing, conformal coating, plasma treatment and selective soldering equipment.

Manufacturer

2747 Loker Ave West
Carlsbad, CA USA

Phone: 18002796835