Technical Library: solder paste print defects (Page 6 of 11)

Dispelling the Black Magic of Solder Paste

Technical Library | 2016-01-21 16:52:27.0

Solder paste has long been viewed as "black magic". This "black magic" can easily be dispelled through a solder paste evaluation. Unfortunately, solder paste evaluation can be a challenge for electronic assemblers. Interrupting the production schedule to perform an evaluation is usually the first hurdle. Choosing the solder paste properties to test is simple, but testing for these properties can be difficult. Special equipment or materials may be required depending upon the tests that are chosen. Once the testing is complete, how does one make the decision to choose a solder paste? Is the decision based on gut feel or hard data?This paper presents a process for evaluating solder pastes using a variety of methods. These methods are quick to run and are challenging, revealing the strengths and weaknesses of solder pastes. Methods detailed in this paper include: print volume, stencil life, response to pause, open time, tack force over time, wetting, solder balling, graping, voiding, accelerated aging, and others.

FCT ASSEMBLY, INC.

Print Performance Studies Comparing Electroform and Laser-Cut Stencils

Technical Library | 2015-11-05 15:09:27.0

There has been recent activity and interest in Laser-Cut Electroform blank foils as an alternative to normal Electroform stencils. The present study will investigate and compare the print performance in terms of % paste transfer as well the dispersion in paste transfer volume for a variety of Electroform and Laser-Cut stencils with and without post processing treatments. Side wall quality will also be investigated in detail. A Jabil solder paste qualification test board will be used as the PCB test vehicle.

Photo Stencil LLC

Analysis of the Mechanical Behavior, Microstructure, and Reliability of Mixed Formulation Solder Joints

Technical Library | 2023-09-26 19:14:44.0

The transition from tin-lead to lead free soldering in the electronics manufacturing industry has been in progress for the past 10 years. In the interim period before lead free assemblies are uniformly accepted, mixed formulation solder joints are becoming commonplace in electronic assemblies. For example, area array components (BGA/CSP) are frequently available only with lead free Sn-Ag-Cu (SAC) solder balls. Such parts are often assembled to printed circuit boards using traditional 63Sn-37Pb solder paste. The resulting solder joints contain unusual quaternary alloys of Sn, Ag, Cu, and Pb. In addition, the alloy composition can vary across the solder joint based on the paste to ball solder volumes and the reflow profile utilized. The mechanical and physical properties of such Sn-Ag-Cu-Pb alloys have not been explored extensively in the literature. In addition, the reliability of mixed formulation solder joints is poorly understood.

Auburn University

Can Nano-Coatings Really Improve Stencil Performance?

Technical Library | 2017-10-26 01:18:49.0

Nano-coatings have been introduced by various manufacturers, with the promise of addressing some of the challenges relative to solder paste printing. Stated benefits include: Reduced underside cleaning, reduced bridging, improved solder paste release and improvements in yield. With several nano technologies already on the market and more likely to be introduced, how can the performance be quantified? How robust are these coatings? How can an assembler approach the ROI of these coatings? What hidden benefits or negative impacts should be considered? This paper will present a rigorous method for evaluating the performance and economic benefits of solder paste stencil nano-coatings.

FCT ASSEMBLY, INC.

AIM Tech Tip Article: Pretty Slick

Technical Library | 2022-06-20 21:01:37.0

We've been doing a lot of print testing in our lab. In our first set of published results, "The Impact of Reduced Solder Alloy Powder Size on Solder Paste Print Performance1" from IPC/APEX 2016, we revealed a hierarchy of input variables to maximize solder paste transfer efficiency and minimize variation. In that study, we used a fully-optioned stencil as part of the equipment set. In order to tease out the data we were looking for, we could not lose critical information to the noise of stencil-induced variations.

AIM Solder

A Study On Process, Strength And Microstructure Analysis Of Low Temperature SnBi Containing Solder Pastes Mixed With Lead-Free Solder Balls

Technical Library | 2021-08-25 16:34:37.0

As the traditional eutectic SnPb solder alloy has been outlawed, the electronic industry has almost completely transitioned to the lead-free solder alloys. The conventional SAC305 solder alloy used in lead-free electronic assembly has a high melting and processing temperature with a typical peak reflow temperature of 245ºC which is almost 30ºC higher than traditional eutectic SnPb reflow profile. Some of the drawbacks of this high melting and processing temperatures are yield loss due to component warpage which has an impact on solder joint formation like bridging, open defects, head on pillow.

Rochester Institute of Technology

Tackling SMT Enemy Number One - Raising The Standard of Solder Paste Application

Technical Library | 2009-05-14 13:57:43.0

Is screen printing technology able to keep pace with rising quality demands and increasingly complex board layouts? Or, is new jet printing technology ready to fill the gap? A comparison study between the two methods reveals some interesting differences. Screen printers offer some possibilities for optimizing solder paste deposits, but optimization is far easier and quicker with the jet printer. At the same time, the ability to print individualized deposits on every single pcb pad may be the ultimate answer to the growing quality challenge.

Mycronic Technologies AB

Lead-free and Tin-lead Assembly and Reliability of Fine-pitch Wafer-Level CSPs

Technical Library | 2007-05-31 19:05:55.0

This paper discusses solder paste printing and flux dipping assembly processes for 0.4 and 0.5mm pitch lead-free WLCSPs and the corresponding assembly results and thermal cyclic reliability obtained. Variables evaluated include reflow ambient, paste type, and stencil design. Reliability is also compared to results for the same components assembled under identical conditions using SnPb solder.

Universal Instruments Corporation

QUANTIFYING THE IMPROVEMENTS IN THE SOLDER PASTE PRINTING PROCESS FROM STENCIL NANOCOATINGS AND ENGINEERED UNDER WIPE SOLVENTS

Technical Library | 2023-05-22 17:46:29.0

Over the past several years, much research has been performed and published on the benefits of stencil nano-coatings and solvent under wipes. The process improvements are evident and well-documented in terms of higher print and end-of-line yields, in improved print volume repeatability, in extended under wipe intervals, and in photographs of the stencil's PCB-seating surface under both white and UV light. But quantifying the benefits using automated Solder Paste Inspection (SPI) methods has been elusive at best. SPI results using these process enhancements typically reveal slightly lower paste transfer efficiencies and less variation in print volumes to indicate crisper print definition. However, the improvements in volume data do not fully account for the overall improvements noted elsewhere in both research and in production.

KYZEN Corporation

BTC and SMT Rework Challenges

Technical Library | 2019-05-22 21:24:05.0

voidless treatment Smaller components -> miniaturization (01005 capability) Large board handling -> dynamic preheating for large board repair Repeatable processes -> flux and paste application (Dip and Print), residual solder removal (scavenging), dispensing, multiple component handling, and traceability Operator support -> higher automation, software guidance

kurtz ersa Corporation


solder paste print defects searches for Companies, Equipment, Machines, Suppliers & Information