Technical Library: the head-in-pillow (Page 1 of 1)

Addressing the Challenge of Head-In-Pillow Defects in Electronics Assembly

Technical Library | 2013-12-27 10:39:21.0

The head-in-pillow defect has become a relatively common failure mode in the industry since the implementation of Pb-free technologies, generating much concern. A head-in-pillow defect is the incomplete wetting of the entire solder joint of a Ball-Grid Array (BGA), Chip-Scale Package (CSP), or even a Package-On-Package (PoP) and is characterized as a process anomaly, where the solder paste and BGA ball both reflow but do not coalesce. When looking at a cross-section, it actually looks like a head has pressed into a soft pillow. There are two main sources of head-in-pillow defects: poor wetting and PWB or package warpage. Poor wetting can result from a variety of sources, such as solder ball oxidation, an inappropriate thermal reflow profile or poor fluxing action. This paper addresses the three sources or contributing issues (supply, process & material) of the head-in-pillow defects. It will thoroughly review these three issues and how they relate to result in head-in pillow defects. In addition, a head-in-pillow elimination plan will be presented with real life examples will be to illustrate these head-in-pillow solutions.

Indium Corporation

Investigation and Development of Tin-Lead and Lead-Free Solder Pastes to Reduce the Head-In-Pillow Component Soldering Defect.

Technical Library | 2014-03-06 19:04:07.0

Over the last few years, there has been an increase in the rate of Head-in-Pillow component soldering defects which interrupts the merger of the BGA/CSP component solder spheres with the molten solder paste during reflow. The issue has occurred across a broad segment of industries including consumer, telecom and military. There are many reasons for this issue such as warpage issues of the component or board, ball co-planarity issues for BGA/CSP components and non-wetting of the component based on contamination or excessive oxidation of the component coating. The issue has been found to occur not only on lead-free soldered assemblies where the increased soldering temperatures may give rise to increase component/board warpage but also on tin-lead soldered assemblies.

Christopher Associates Inc.

The X-Factor - How X-ray Technology is Improving the Electronics Assembly Industry

Technical Library | 2023-11-20 17:30:11.0

Summary for today 1. Electronic component inspection and failure analysis. 2. Component counting and material management. 3. Reverse engineering. 4. Counterfeit detection. 5. Real-time defect verification. 6. Computed tomography (CT) techniques and how to differentiate between 2D, 2.5D, and 3D x-ray inspection. 7. Design for manufacturing (DFM) and design for x-ray inspection (DFXI). 8. Voids, bridging, and head-in-pillow failures in bottom terminated components (BTC). 9. Artificial Intelligence and x-ray inspection

Creative Electron Inc

  1  

the head-in-pillow searches for Companies, Equipment, Machines, Suppliers & Information

The Branford Group
The Branford Group

A global industrial auction and valuation business with extensive experience in SMT, PCB Assembly & Manufacturing, Test, Semiconductor and other Electronics Machinery & Equipment.

Manufacturer / Equipment Dealer / Broker / Auctions

896 Main Street
Branford, CT USA

Phone: 203-488-7020