Technical Library | 2015-07-21 13:50:37.0
Achieving an even coat at the right desired thickness is a major challenge when it comes to applying conformal coating to a Printed Circuit Board (PCB). Applying a coating too thin will ultimately render the electronic assembly vulnerable to potential environmental risks therefore defeating the purpose of the coating. Apply the coat too thick, and it could leave the electronic specific components non-functional therefore destroying the electronic assembly entirely. Coating thickness must meet quality specifications. Measurements for coating thickness may be taken while film is dry or wet. Once measurements are recorded, thickness is compared to quality specifications and fluid dispensing automation machinery is calibrated as necessary. There are a handful of methods for measuring conformal coating thickness that are commonly used in the Electronic Manufacturing Services (EMS) and Original Electronic Manufacturer (OEM) industries. A few commonly used methods for checking conformal coating thickness include:
Technical Library | 2019-07-27 07:13:16.0
Carrier Tape refers to a strip product used in the field of electronic packaging, which has a specific thickness, and equidistantly distributes holes (also called pockets) for holding electronic components in the longitudinal direction thereof. Positioning hole for index positioning.
Technical Library | 2015-08-25 13:51:27.0
The stencil printing process is one of the most critical processes in the electronic production. Due to the requirement: "faster and smaller" it is necessary to place components with different paste volume close together without regard to solder paste printing. In our days it is no longer possible to control the solder paste volume only by adjustment of the aperture dimensions. The requirements of solder paste volumes for specific components are realized by different thicknesses of metal sheets in one stencil with so called step stencils. The step-down stencil is required when it is desirable to print fine-pitch devices using a thinner stencil foil, but print other devices using a thicker stencil foil. The paper presents the innovative technology of step-up and step-down stencils in a laser cutting and laser welding process. The step-up/step-down stencil is a special development for the adjustment of solder paste quantity, fulfilling the needs of placement and soldering. This includes the laser cutting and laser welding process as well as the resulting stencil characteristics and the potential of the printing process.
Technical Library | 2023-01-06 16:09:03.0
The 4-14 IPC Standards Committee recently created a revision to the IPC4552 specification for Electroless Nickel/Immersion Gold (ENIG) finished Printed Circuit Boards (PCB). Revision A brings a more comprehensive evaluation of metal layer thicknesses measurement, composition and introduces, for the first time, a quality aspect for nickel corrosion which has been historically connected to a defect called black line nickel or black pad.
Technical Library | 2019-05-15 22:26:02.0
As the demand for higher routing density and transfer speed increases, Via-In-Pad Plated Over (VIPPO) has become more common on high-end telecommunications products. The interactions of VIPPO with other features used on a PCB such as the traditional dog-bone pad design could induce solder joints to separate during the second and thereafter reflows. The failure has been successfully reproduced, and the typical failure signature of a joint separation has been summarized.To better understand the solder separation mechanism, this study focuses on designing a test vehicle to address the following three perspectives: PCB material properties, specifically the Z-direction or out-of-plane Coefficient of Thermal Expansion (CTE); PCB thickness and back drill depth; and quantification of the driving force magnitude beyond which the separation is due to occur.
Technical Library | 2019-04-10 22:08:31.0
The stimulating impact of the automotive industry has sharpened focus on immersion tin (i-Sn) more than ever before. Immersion tin with its associated attributes, is well placed to fulfill the requirements of such a demanding application. In an environment dominated by reliability, the automotive market not only has very stringent specifications but also demands thorough qualification protocols. Qualification is ultimately a costly exercise. The good news is that i-Sn is already qualified by many tier one OSATs. The focus of this paper is to generate awareness of the key factors attributed to soldering i-Sn. Immersion tin is not suitable for wire bonding but ultimately suited for multiple soldering applications. The dominant topics of this paper will be IMC formations in relation to reflow cycles and the associated solderability performance. Under contamination free conditions, i-Sn can provide a solderable finish even after multiple reflow cycles. The reflow conditions employed in this paper are typical for lead free soldering environments and the i-Sn thicknesses are approximately 1 μm.
Technical Library | 2020-09-08 16:43:32.0
Atomic layer deposition (ALD) is an ultra-thin film deposition technique that has found many applications owing to its distinct abilities. They include uniform deposition of conformal films with controllable thickness, even on complex three-dimensional surfaces, and can improve the efficiency of electronic devices. This technology has attracted significant interest both for fundamental understanding how the new functional materials can be synthesized by ALD and for numerous practical applications, particularly in advanced nanopatterning for microelectronics, energy storage systems, desalinations, catalysis and medical fields. This review introduces the progress made in ALD, both for computational and experimental methodologies, and provides an outlook of this emerging technology in comparison with other film deposition methods. It discusses experimental approaches and factors that affect the deposition and presents simulation methods, such as molecular dynamics and computational fluid dynamics, which help determine and predict effective ways to optimize ALD processes, hence enabling the reduction in cost, energy waste and adverse environmental impacts. Specific examples are chosen to illustrate the progress in ALD processes and applications that showed a considerable impact on other technologies.
Technical Library | 2021-07-20 20:02:29.0
During the manufacturing of printed circuit boards (PCBs) for a Flight Project, it was found that a European manufacturer was building its boards to a European standard that had no requirement for copper wrap on the vias. The amount of copper wrap that was measured on coupons from the panel containing the boards of interest was less than the amount specified in IPC-6012 Rev B, Class 3. To help determine the reliability and usability of the boards, three sets of tests and a simulation were run. The test results, along with results of simulation and destructive physical analysis, are presented in this paper. The first experiment involved subjecting coupons from the panels supplied by the European manufacturer to thermal cycling. After 17 000 cycles, the test was stopped with no failures. A second set of accelerated tests involved comparing the thermal fatigue life of test samples made from FR4 and polyimide with varying amounts of copper wrap. Again, the testing did not reveal any failures. The third test involved using interconnect stress test coupons with through-hole vias and blind vias that were subjected to elevated temperatures to accelerate fatigue failures. While there were failures, as expected, the failures were at barrel cracks. In addition to the experiments, this paper also discusses the results of finite-element analysis using simulation software that was used to model plated-through holes under thermal stress using a steady-state analysis, also showing the main failure mode was barrel cracking. The tests show that although copper wrap was sought as a better alternative to butt joints between barrel plating and copper foil layers, manufacturability remains challenging and attempts to meet the requirements often result in features that reduce the reliability of the boards. Experimental and simulation work discussed in this paper indicate that the standard requirements for copper wrap are not contributing to the overall board reliability, although it should be added that a design with a butt joint is going to be a higher risk than a reduced copper wrap design. The study further shows that procurement requirements for wrap plating thickness from Class 3 to Class 2 would pose little risk to reliability (minimum 5 μm/0.197 mil for all via types).Experimental results corroborated by modeling indicate that the stress maxima are internal to the barrels rather than at the wrap location. In fact, the existence of Cu wrap was determined to have no appreciable effect on reliability.
Technical Library | 2019-10-24 06:29:59.0
Making your novel electronic item design ready for mass fabrication and printed circuit board assembly consists of a lot of steps as well as risks. I will provide a few recommendations about how to neglect pricey errors and how to reduce the time to promote your novel item designs. You can hire printed circuit board assembly services for this. As soon as you have accomplished your product as well as printed circuit board design, you wish to get started developing prototypes prior to you commit to big fabrication volume. A lot of design software packages, for instance, PCB layout design software, as well as an industrial design software program, possess simulation potentials incorporated. Carrying out a simulation facilitates curtailing numerous design mistakes prior to the first prototype is developed. In case you are developing an intrusive item, you might desire to think about a modular design wherein all of the chief functionalities are situated in individual modules. All through your testing, you could then swap modules that don’t cater to the design limits. Spinning individual modules would be swifter and more cost-effective in comparison to spinning a complete design. Counting on the design intricacy, you can mull over manually mounting printed circuit board elements to bank dollars. Nonetheless, for medium to big intricacy this procedure likely to be very time taking, typically in case you wish to create numerous prototypes. Hence it makes sense thinking about a contract manufacturer for the assembly. Whilst running miniature quantity fabrication runs, the fabrication setup expenditure will usually control the by and large prototype constructs expenditure. Whilst seeking a subcontractor, it is finest to choose a vendor that focuses on prototype builds to reduce the cost. Prototype printed circuit board fabricators characteristically join the circuit boards of a number of clients which efficiently shares the setup expenditure in the midst of some customers. The disadvantage is that you would characteristically only be able to want among numerous standard printed circuit board material thicknesses as well as sizes. Apart from choosing a supplier with low setup expenditure, choosing a firm that would moreover be capable to manage your whole fabrication runs curtails mistakes because switching fabricators have the chance of errors owing to a specific supplier interpreting fabrication design data in a different way. This manner your design is already translated into the particular machine data that implies little or no setup expenditure for your final fabrication. A few PCB manufacturers also provide printed circuit board design services that are awesome plus if you do not possess experience with the design. Moreover, these vendors would be capable to help you in case there are issues with your design folders and be capable to detect issues prior to the fabrication.
1 |