Technical Library: visual inspection (Page 1 of 2)

Crafting an Efficient SMT Conformal Coating Line for Double-Sided PCBA

Technical Library | 2023-11-09 08:53:45.0

Crafting an Efficient SMT Conformal Coating Line for Double-Sided PCBA In the intricate realm of electronics manufacturing, selecting the ideal SMT conformal coating line can seem like a challenging quest. The pursuit of a solution that seamlessly integrates efficiency, reliability, and performance is the ultimate goal. In this article, we embark on a journey to unravel the secrets of a standard SMT conformal coating line, using a captivating visual guide as our compass. The Symphony Of Components In An SMT Conformal Coating Line Picture a finely orchestrated symphony, with each instrument playing a unique role in this PCB coating process. The star performers in this lineup include: Transfer Conveyor: These act as the stage where the PCB's journey begins. Think of them as the entry and exit points for your precious boards, allowing a smooth, choreographed dance through the line. 1st Coating Machine: As the first movement in this musical journey, this machine, partnered with the initial curing station, lays down the foundation – applying adhesive to one side of the PCB. Inspection Conveyor: After the initial curing, our inspectors take center stage, using these transfer stations to carefully evaluate the coating's quality. 1st Curing Oven: This is where the magic happens. The first curing oven solidifies the adhesive applied in the previous act, setting the tone for a flawless performance. Flipper Machine: The flipper machine takes the spotlight, gracefully turning the PCB to reveal its other side, ensuring both faces receive their share of adhesion. 2nd Coating Machine: With a newfound perspective, the second coating machine takes the stage, applying adhesive to the reverse side of the PCB. 2nd Curing Oven: The grand finale! The second curing oven brings our symphony to a breathtaking close, solidifying the adhesive applied in the second act, creating a harmonious, dual-sided masterpiece. Efficiency Meets Dual-Side Coating This SMT conformal coating line is like a well-choreographed ballet that requires at least two dancers. One stands at the front, carefully loading PCBs onto the stage, guiding them through the first act. After the flip, the second dancer carries them through the second act, with both sides perfectly coated, ensuring a flawless performance for applications requiring dual-sided adhesion. UV Curing Oven For Illuminating Results For applications that embrace UV-curable adhesives, our line includes UV curing ovens, adding a layer of brilliance to the process and ensuring an efficient solidification of adhesives. Transfer Stations With A Touch Of Magic Within this symphony, the transfer stations wear a touch of magic – the second and fourth stations feature enchanting blue glass covers illuminated by embedded LED lights. These stations offer operators a clear view of the adhesive quality, allowing for meticulous inspections. The blue glass covers also act as protective shields, guarding freshly coated PCBs from the ever-present dust fairies. Certified Excellence: European Standards And CE Certification Ensuring that our performance meets the highest standards, our entire ensemble adheres to stringent European safety standards and proudly boasts CE certification, a testament to compliance with safety, health, and environmental protection requirements. A Variety Of Coating Machines For Your Unique Needs Our lineup doesn't just feature one star, but an ensemble of coating machines, including models like I.C.T-T550, I.C.T-T550U, I.C.T-T600, and I.C.T-T650. For an encore performance with detailed specifications of each model, please refer to our dedicated article. Additionally, for a captivating exploration of the right coating valve for your adhesive, please visit our comprehensive guide. Single-Sided PCB Coating For those who prefer a single board, our dedicated article on single-sided PCB coating is a spotlight on this specialized process. In the dynamic world of electronics manufacturing, our SMT conformal coating line stands as a versatile and reliable performance. With dual-sided coating capabilities, adherence to European safety standards, and CE certification, we offer a comprehensive platform for your coating needs. Join us in this symphony and explore our range of coating machines and accessories to enhance your conformal coating process. It's a performance that promises to leave you in awe!

I.C.T ( Dongguan Intercontinental Technology Co., Ltd. )

Methods Used In The Detection Of Counterfeit Electronic Components

Technical Library | 2022-10-04 16:43:10.0

In this paper I will discuss the different methods and equipment used to detect counterfeit electronic parts, specifically integrated circuits as well as demonstrate some of the "red flags" that help to identify a part as being suspected counterfeit. We will begin with the initial receipt of the parts and the examination of the outer packaging, the basic visual inspection of the parts, the visual inspection and documentation at high magnification, permanency marking, blacktop test, scrape test, XRF (RoHS), decapsulation, X-ray, basic electrical testing, C-SAM, full function testing and limited function testing.

Electro-Comp Tape and Reel Services, LLC

Using X-Ray Systems To Detect Counterfeit And Reworked Electronic Components

Technical Library | 2021-03-18 20:03:27.0

Much has been said and written about the accuracy of visual attribute inspections of potentially counterfeit components. The techniques and procedures being used to inspect counterfeit and reworked electronic components in the open marketplace can be quite effective in most cases.

World Micro

FICS-PCB: A Multi-Modal Image Dataset for Automated Printed Circuit Board Visual Inspection

Technical Library | 2024-04-29 21:19:42.0

Over the years, computer vision and machine learning disciplines have considerably advanced the field of automated visual inspection for Printed Circuit Board (PCB-AVI) assurance. However, in practice, the capabilities and limitations of these advancements remain unknown because there are few publicly accessible datasets for PCB visual inspection and even fewer that contain images that simulate realistic application scenarios. To address this need, we propose a publicly available dataset, "FICS-PCB"1, to facilitate the development of robust methods for PCB-AVI. The proposed dataset includes challenging cases from three variable aspects: illumination, image scale, and image sensor. This dataset consists of 9,912 images of 31 PCB samples and contains 77,347 annotated components. This paper reviews the existing datasets and methodologies used for PCBAVI, discusses challenges, describes the proposed dataset, and presents baseline performances using feature engineering and deep learning methods for PCB component classification.

University of Florida

Automatic Visual Inspection of Printed Circuit Board for Defect Detection and Classification

Technical Library | 2021-04-15 14:39:41.0

Inspection of printed circuit board (PCB) has been a crucial process in the electronic manufacturing industry to guarantee product quality & reliability, cut manufacturing cost and to increase production. The PCB inspection involves detection of defects in the PCB and classification of those defects in order to identify the roots of defects. In this paper, all 14 types of defects are detected and are classified in all possible classes ...

S. V. National Institute of Technology

Streaming Machine Learning and Online Active Learning for Automated Visual Inspection

Technical Library | 2021-11-22 20:39:44.0

Quality control is a key activity performed by manufacturing companies to verify product conformance to the requirements and specifications. Standardized quality control ensures that all the products are evaluated under the same criteria. The decreased cost of sensors and connectivity enabled an increasing digitalization of manufacturing and provided greater data availability. Such data availability has spurred the development of artificial intelligence models, which allow higher degrees of automation and reduced bias when inspecting the products. Furthermore, the increased speed of inspection reduces overall costs and time required for defect inspection. In this research, we compare five streaming machine learning algorithms applied to visual defect inspection with real world data provided by Philips Consumer Lifestyle BV. Furthermore, we compare them in a streaming active learning context, which reduces the data labeling effort in a real-world context. Our results show that active learning reduces the data labeling effort by almost 15% on average for the worst case, while keeping an acceptable classification performance. The use of machine learning models for automated visual inspection are expected to speed up the quality inspection up to 40%.

Jožef Stefan Institute

Risk Mitigation in Hand Soldering

Technical Library | 2019-01-02 21:51:49.0

Failed solder joints remain a constant source of printed circuit board failure. Soldering is the bonding of metallic surfaces via an intermetallic compound (IMC). The interaction between thermal energy delivery, flux chemistry, and solder chemistry creates the solder bond or joint. Today, reliability relies on visual inspection; operator experience and skill, control of influencers e.g. tip geometry, tip temperature, and collection and analysis of process data. Each factor involved with the formation of the solder joint is an element of risk and can affect either throughput or repeatability. Mitigating this risk in hand soldering requires the identification of these factors and a means to address them.

Metcal

Using Automated 3D X-Ray Inspection to Detect BTC Defects

Technical Library | 2013-07-25 14:02:15.0

Bottom-termination components (BTC), such as QFNs, are becoming more common in PCB assemblies. These components are characterized by hidden solder joints. How are defects on hidden DFN joints detected? Certainly, insufficient solder joints on BTCs cannot be detected by manual visual inspection. Nor can this type of defect be detected by automated optical inspection; the joint is hidden by the component body. Defects such as insufficients are often referred to as "marginal" defects because there is likely enough solder present to make contact between the termination on the bottom-side of the component and the board pad for the component to pass in-circuit and functional test. Should the board be subjected to shock or vibration, however, there is a good chance this solder connection will fracture, leading to an open connection.

Flex (Flextronics International)

A Printed Circuit Board Inspection System With Defect Classification Capability

Technical Library | 2013-08-15 13:12:11.0

An automated visual PCB inspection is an approach used to counter difficulties occurred in human’s manual inspection that can eliminates subjective aspects and then provides fast, quantitative, and dimensional assessments. In this study, referential approach has been implemented on template and defective PCB images to detect numerous defects on bare PCBs before etching process, since etching usually contributes most destructive defects found on PCBs. The PCB inspection system is then improved by incorporating a geometrical image registration, minimum thresholding technique and median filtering in order to solve alignment and uneven illumination problem. Finally, defect classification operation is employed in order to identify the source for six types of defects namely, missing hole, pin hole, underetch, short-circuit, mousebite, and open-circuit.

Universiti Teknologi Malaysia

Review of Interconnect Stress Testing Protocols and Their Effectiveness in Screening Microvias

Technical Library | 2016-11-30 15:53:15.0

The use of microvias in Printed Circuit Boards (PCBs) for military hardware is increasing as technology drives us toward smaller pitches and denser circuitry. Along with the changes in technology, the industry has changed and captive manufacturing lines are few and far between. As PCBs get more complicated, the testing we perform to verify the material was manufactured to our requirements before they are used in an assembly needs to be reviewed to ensure that it is sufficient for the technology and meets industry needs to better screen for long-term reliability. The Interconnect Stress Testing (IST) protocol currently used to identify manufacturing issues in plated through holes, blind, or buried vias are not necessarily sufficient to identify problems with microvias. There is a need to review the current IST protocol to determine if it is adequate for finding bad microvias or if there is a more reliable test that will screen out manufacturing inconsistencies. The objective of this research is to analyze a large population of PCB IST coupons to determine if there is a more effective IST test to find less reliable microvias in electrically passing PCB product and to screen for manufacturing deficiencies. The proposed IST test procedure will be supported with visual inspection of corresponding microvia cross sections and Printed Wiring Assembly (PWA) acceptance test results. The proposed screening will be shown to only slightly affect PCB yield while showing a large benefit to screening before PCBs are used in an assembly.

Raytheon


visual inspection searches for Companies, Equipment, Machines, Suppliers & Information

INSPECTION TECH
INSPECTION TECH

Our Company handle AOI (Auto Optical Inspection) and SPI (Solder Paste Inspection) Machines.

Equipment Dealer / Broker / Auctions

Hwaseong-si, Gyeonggi-do, Korea
Hwaseong-si, South Korea

Phone: +82-1029254936