Technical Library: wire bonding gold (Page 1 of 3)

Wedge Bonding Tool Selection

Technical Library | 2019-05-23 10:30:22.0

Increasing I/O numbers, device complexity, and product miniaturization requires high precision bonding tools, and sophisticated equipment. Careful consideration should be given to wedge geometry while selecting the tool for a fine pitch wire bonding application. Wire bonding is a process that creates an electrical connection between a die and a substrate or lead typically using gold or aluminum wire. Wedge bonding is a specific type of wire bonding that uses a wedge shaped tool to create the welds. The design of the wedge tool has changed very little over the past decade. The wire is fed at an angle through the back of the wedge. This angle is typically 30 to 60 degrees and is application dependent. Some applications require a higher feed angle due to package clearance issues. Some deep access applications require a 90 degree feed angle. In this configuration, the wire is fed through a hole in the shank of the wedge tool. Wire feed is shown in Figure 1.

ACI Technologies, Inc.

Platings for Interconnections

Technical Library | 2019-06-04 10:19:46.0

Interconnection technology relies very heavily on the ability of the conductors on a printed wiring assembly to maintain reliable signal integrity. Harsh environmental factors can precipitate a loss of conductivity due to oxidation and corrosion. Connections are typically soldered or inserted using pressure fitted connectors to obtain enough surface contact to meet the electrical conductivity requirements. In pressure contacts, surface integrity is especially critical where the abrasive effects of retraction and insertion can wear off the metallic finish from the contact area. This can expose the underlying copper or nickel and lead to increased resistance at the contact points. These types of conductors are frequently found in card edge connectors where the terminations are plated with a layer of nickel and gold (frequently referred to as gold fingers). A hard gold is typically used containing very small amounts of nickel and cobalt to increase the wear resistance.

ACI Technologies, Inc.

Flip Chip Rework

Technical Library | 2019-05-21 17:34:08.0

Flip chip components have been gaining popularity in the electronics industry since their introduction in the 1960s. Advances in attach methods and adhesives, as well as the drive for smaller and faster electronic devices made the technology take off. The basic premise of the flip chip is that the chip (semiconductor device) is mounted flipped from the traditional position. The traditional method of mounting a die is to mount it on a lead frame with the circuit and bond pads face up. The bond pads then receive a bond wire which then connects to the proper lead on the lead frame. Flip chips are mounted face down onto a substrate using small bumps on the bond pads to make direct electrical connection to their respective pads on the substrate. Stay tuned for more information on attachment techniques next month. This article will focus on how to rework flip chips.

ACI Technologies, Inc.

Non-Destructive Test Methods

Technical Library | 2019-09-23 09:35:00.0

Failure analysis (FA), by its very nature, is needed only when things goawry. Before any testing is performed on the sample, a decision mustbe made as to whether or not the sample is allowed to be destroyedin the process of testing. Non-destructive testing can allow for re-use of the assembly since the functionality is not altered, but there still remains the possibility that inadvertent damage can occur through the course of the analysis. If non-destructive testing is preferred, then the following types of analysis can be performed. The testing can be divided into four categories: visual, X-ray (X-ray imaging and X-ray fluorescence), cleanliness (resistivity of solvent extract, ion chromatography, and Fourier transform infrared spectroscopy), and mechanical (non-destructive wire bond pull).

ACI Technologies, Inc.

Ball Grid Array (BGA) Voiding Affecting Functionality

Technical Library | 2020-11-09 16:59:53.0

A customer contacted ACI Technologies regarding a high failure rate of their assemblies. They provided assemblies to be X-rayed and inspected for the purpose of identifying any process related issues such as (but not limited to) solder and assembly workmanship and evidence of damage due to moisture related problems during reflow (a.k.a. "popcorning"). Moisture damage usually appears as physical damage to the component. The first indication of moisture damage would be externally observable changes to the package in the form of bulging or fractures to the outer surface of the component, an example of which is shown in Figure 1. Internally observable indicators of moisture damage typically include fractures to the die inside the package and lifted or fractured wire bonds. These conditions would be apparent during transmissive X-ray inspection. Another symptom of moisture related damage would be inconsistent solder joint sizes that result from package deformation during the liquidus phase of the reflow process. None of these indicators of moisture related damage were present on the customer samples.

ACI Technologies, Inc.

Gold Wire Bonding Performance and Reliability of ENEPIG Surface Finishes.

Technical Library | 2011-03-30 21:14:33.0

The expression "multifunctional PCB", as a synonym for a PCB which is applicable with a variety of assembly techniques, is already established on the market. That means the PCB can be used for multiple reflow soldering and multiple assembly techniques lik

Atotech

Approaches to Overcome Nodules and Scratches on Wire Bondable Plating on PCBs

Technical Library | 2020-08-27 01:22:45.0

Initially adopted internal specifications for acceptance of printed circuit boards (PCBs) used for wire bonding was that there were no nodules or scratches allowed on the wirebond pads when inspected under 20X magnification. The nodules and scratches were not defined by measurable dimensions and were considered to be unacceptable if there was any sign of a visual blemish on wire-bondable features. Analysis of the yield at a PCB manufacturer monitored monthly for over two years indicated that the target yield could not be achieved, and the main reasons for yield loss were due to nodules and scratches on the wirebonding pads. The PCB manufacturer attempted to eliminate nodules and scratches. First, a light-scrubbing step was added after electroless copper plating to remove any co-deposited fine particles that acted as a seed for nodules at the time of copper plating. Then, the electrolytic copper plating tank was emptied, fully cleaned, and filtered to eliminate the possibility of co-deposited particles in the electroplating process. Both actions greatly reduced the density of the nodules but did not fully eliminate them. Even though there was only one nodule on any wire-bonding pad, the board was still considered a reject. To reduce scratches on wirebonding pads, the PCB manufacturer utilized foam trays after routing the boards so that they did not make direct contact with other boards. This action significantly reduced the scratches on wire-bonding pads, even though some isolated scratches still appeared from time to time, which caused the boards to be rejected. Even with these significant improvements, the target yield remained unachievable. Another approach was then taken to consider if wire bonding could be successfully performed over nodules and scratches and if there was a dimensional threshold where wire bonding could be successful. A gold ball bonding process called either stand-off-stitch bonding (SSB) or ball-stitch-on-ball bonding (BSOB) was used to determine the effects of nodules and scratches on wire bonds. The dimension of nodules, including height, and the size of scratches, including width, were measured before wire bonding. Wire bonding was then performed directly on various sizes of nodules and scratches on the bonding pad, and the evaluation of wire bonds was conducted using wire pull tests before and after reliability testing. Based on the results of the wire-bonding evaluation, the internal specification for nodules and scratches for wirebondable PCBs was modified to allow nodules and scratches with a certain height and a width limitation compared to initially adopted internal specifications of no nodules and no scratches. Such an approach resulted in improved yield at the PCB manufacturer.

Teledyne DALSA

Mechanical stress test for component solder joints and bonding wires

Technical Library | 2016-08-24 06:15:35.0

From consumer electronics to systems control, automotive technology to aviation and aerospace – today, electronics are absolutely essential in many sectors. They increasingly replace mechanical components, eliminating wear and tear and thereby extending the service life. What is easily forgotten in this regard is that electronics are also subject to the laws of mechanics. Mechanical test equipment is crucial to test components for the secure hold of welded, soldered or adhesive bonds. A new, mechanically intricate test probe with universal clamping jaws, that can even grasp the individual bonding wires, is in line with the trend toward ever smaller components. Serving as an actuator for these is a micro drive that can be precisely controlled using a miniaturised motion controller to relieve the control unit in the test device.

XYZTEC bv

Copper Wire Bond Failure Mechanisms.

Technical Library | 2014-07-24 16:26:34.0

Wire bonding a die to a package has traditionally been performed using either aluminum or gold wire. Gold wire provides the ability to use a ball and stitch process. This technique provides more control over loop height and bond placement. The drawback has been the increasing cost of the gold wire. Lower cost Al wire has been used for wedge-wedge bonds but these are not as versatile for complex package assembly. The use of copper wire for ball-stitch bonding has been proposed and recently implemented in high volume to solve the cost issues with gold. As one would expect, bonding with copper is not as forgiving as with gold mainly due to oxide growth and hardness differences. This paper will examine the common failure mechanisms that one might experience when implementing this new technology.

DfR Solutions

Challenges on ENEPIG Finished PCBs: Gold Ball Bonding and Pad Metal Lift

Technical Library | 2017-09-07 13:56:11.0

As a surface finish for PCBs, Electroless Nickel/Electroless Palladium/Immersion Gold (ENEPIG) was selected over Electroless Nickel/Immersion Gold (ENIG) for CMOS image sensor applications with both surface mount technology (SMT) and gold ball bonding processes in mind based on the research available on-line. Challenges in the wire bonding process on ENEPIG with regards to bondability and other plating related issues are summarized.

Teledyne DALSA

  1 2 3 Next

wire bonding gold searches for Companies, Equipment, Machines, Suppliers & Information

One stop service for all SMT and PCB needs

Training online, at your facility, or at one of our worldwide training centers"
Pillarhouse USA for handload Selective Soldering Needs

High Throughput Reflow Oven
Sell Your Used SMT & Test Equipment

High Resolution Fast Speed Industrial Cameras.
Professional technical team,good service, ready to ship- Various brands pick and place machine!

Internet marketing services for manufacturing companies