Technical Library: i/f memory board (Page 1 of 1)

Reliability Evaluation of One-Pass and Two-Pass Techniques of Assembly for Package on Packages under Torsion Loads

Technical Library | 2021-12-16 01:52:32.0

Package on Packages (PoP) find use in applications that require high performance with increased memory density. One of the greatest benefits of PoP technology is the elimination of the expensive and challenging task of routing high-speed memory lines from under the processor chip out to memory chip in separate packages. Instead, the memory sits on top of the processor and the connections are automatically made during assembly. For this reason PoP technology has gained wide acceptance in cell phones and other mobile applications. PoP technology can be assembled using one-pass and two-pass assembly processes. In the one-pass technique the processor is first mounted to the board, the memory is mounted to the processor and the finished board is then run through the reflow oven in a single pass. The two-pass technique has an intermediate step in which the memory is first mounted onto the processor.

CALCE Center for Advanced Life Cycle Engineering

Development of Ultra-Multilayer Printed Circuit Board

Technical Library | 2011-01-20 19:50:30.0

This article introduces the technical development that went in to realizing an 80-layer ultra-multilayer printed circuit board, which meets the market demand for a "semiconductor test board supporting memory increases".

OKI Printed Circuits Co., Ltd.

A Two-Layer Board Intellectual Property to Reduce Electromagnetic Radiation

Technical Library | 2011-03-24 18:48:30.0

In this paper, a PCB layout technique is proposed to maintain ideal return paths for high-speed traces routing. Our goal is to implement and verify the digital LCD-TV in 2-layer PCB including the high-speed memory interfaces with less electromagnetic radi

MediaTek Inc.

Assembly Reliability of TSOP/DFN PoP Stack Package

Technical Library | 2018-12-12 22:20:22.0

Numerous 3D stack packaging technologies have been implemented by industry for use in microelectronics memory applications. This paper presents a reliability evaluation of a particular package-on-package (PoP) that offers a reduction in overall PCB board area requirements while allowing for increases in functionality. It utilizes standard, readily available device packaging methods in which high-density packaging is achieved by: (1) using standard "packaged" memory devices, (2) using standard 3-dimensional (3-D) interconnect assembly. The stacking approach provides a high level of functional integration in well-established and already functionally tested packages. The stack packages are built from TSOP packages with 48 leads, stacked either 2-high or 4-high, and integrated into a single dual-flat-no-lead (DFN) package.

Jet Propulsion Laboratory

Package on Package (PoP) Stacking and Board Level Reliability, Results of Joint Industry Study

Technical Library | 2007-08-02 13:24:23.0

This paper presents the results of a joint - three way study between Amkor Technology, Panasonic Factory Solutions and Spansion in the area of package on package (PoP) board level reliability (BLR) (...) The scope of this paper is to cover the already popular 14 x 14mm PoP package size that provides a 152 pin stacked interface which supports a high level of flexibility in the memory architecture for multimedia requirements.

Amkor Technology, Inc.

Printed Circuit Board Recycling: Physicochemical And Economic Analysis Of Metals

Technical Library | 2022-01-05 23:20:33.0

This study aims to present the characterization of five different types of printed circuit boards (PCBs) for use in future recycling processes. PCBs used: motherboards, lead free motherboards, video cards, memory and printer cards. The comminution of the circuit boards was performed using blade mills and hammer mills with 9mm and 6mm meshes, respectively. Throughout the physical processing, analysis was made with stereoscopic optics to ensure that the correct materials had been released. The pre-magnetic separation parts were given a granulometric classification followed by acid digestion and loss on ignition tests.

Universidade de São Paulo

A Novel Low Temperature Fast Flow And Fast Cure Reworkable Underfill

Technical Library | 2014-04-11 16:03:15.0

In order to meet the increasing demand of device miniaturization, high speed, more memory, more function, low cost, and more flexibility in device design and manufacturing chain, underfilling has increasingly become an essential process for the good reliability of electronic devices. Filled capillary underfill has been selected for use in package-level where there is large thermal stress caused by CTE mismatch issue, but the underfill is usually not reworkable. Unfilled capillary underfill has been used for board-level application such as BGA/CSP, POP, WL-CSP where there is need for mechanical shock resistance, the underfill is usually reworkable.

YINCAE Advanced Materials, LLC.

A Low Cost Manufacturing Solution - Low Temperature Super-Fast Cure and Flow Reworkable Underfill

Technical Library | 2016-01-12 11:09:47.0

In order to meet the increasing demand of device miniaturization, high speed, more memory, more function, low cost, and more flexibility in device design and manufacturing chain, underfilling has increasingly become an essential process for the good reliability of electronic devices. Filled capillary underfill has been selected for used in package-level where there is large thermal stress caused by CTE mismatch issue, but the underfill is usually not reworkable. Unfilled capillary underfill has been used for board-level application such as BGA/CSP, POP, WL-CSP where there is need for mechanical shock resistance, the underfill is usually reworkable.

YINCAE Advanced Materials, LLC.

Solutions for Selective Soldering of High Thermal Mass and Fine-Pitch Components

Technical Library | 2020-05-07 03:46:27.0

The selective soldering process has evolved to become a standard production process within the electronics assembly industry, and now accommodates a wide variety of through-hole component formats in numerous applications. Most through-hole components can be easily soldered with the selective soldering process without difficulty, however some types of challenging components require additional attention to ensure optimum quality control is maintained. Several high thermal mass components can place demands on the selective soldering process, while the use of specialized solder fixtures and/or pallets often places an additional thermal demand on the preheating process. Fine-pitch through-hole components and connectors place a different set of demands on the selective soldering process and typically require special attention to lead projection and traverse speed to minimize bridging between adjacent pins. Dual in-line memory module (DIMM) connectors, compact peripheral component interface (cPCI) connectors, coax connectors and other high thermal mass components as well as fine-pitch microconnectors,can present challenges when soldered into backplanes or multilayer printed circuit board assemblies. Adding to this challenge, compact peripheral component interface connectors can present additional solderability issues due to their beryllium copper termination pins.

SELECT Products | Nordson Electronics Solutions

Techniques for Selective Soldering High Thermal Mass and Fine-Pitch Components

Technical Library | 2022-08-08 15:06:06.0

Selective soldering has evolved to become a standard production process within the electronics assembly industry, and now accommodates a wide variety of through-hole component formats in numerous applications. Most through-hole components can be easily soldered with the selective soldering process without difficulty however some types of challenging components require additional attention to ensure that optimum quality is maintained. Several high thermal mass components can place demands on the selective soldering process, while the use of specialized solder fixtures, or solder pallets, often places additional thermal demand on the preheating process. Fine-pitch through-hole components and connectors place a different set of demands on the selective soldering process and typically require special attention to lead projection and traverse speed to minimize bridging between adjacent pins. Dual in-line memory module (DIMM) connectors, compact peripheral component interface (cPCI) connectors, coax connectors and other high thermal mass components as well as fine-pitch microconnectors, can present challenges when soldered into backplanes or multilayer printed circuit board assemblies. Adding to this challenge, compact peripheral component interface connectors can present additional solderability issues because of their beryllium copper base metal pins. Key Terms: Selective soldering, drop-jet fluxing, sustained preheating, flux migration, adjacent clearance, lead-to-hole aspect ratio, lead projection, thermal reliefs, gold embrittlement, solderability testing.

Hentec Industries, Inc. (RPS Automation)

  1  

i/f memory board searches for Companies, Equipment, Machines, Suppliers & Information

Software for SMT

High Precision Fluid Dispensers
Void Free Reflow Soldering

Software programs for SMT placement and AOI Inspection machines from CAD or Gerber.
SMT feeders

World's Best Reflow Oven Customizable for Unique Applications
design with ease with Win Source obselete parts and supplies

"Find out how you can receive priority in SMTnet Search with out Sponsor membership."