Technical Library | 2010-08-26 19:45:44.0
The advantages of the Compression Mount Technology (CMT) when using AdvancedTCA and MicroTCA connectors.
Technical Library | 2019-06-06 00:19:02.0
More and more people and things are using electronic devices to communicate. Subsequently, many electronic products, in particular mobile base stations and core network nodes, need to handle enormous amounts of data per second. One important link in this communication chain is high speed pressfit connectors that are often used to connect mother boards and back planes in core network nodes. These new high speed pressfit connectors have several hundreds of thin, short and weak pins that are prone to damage. Small variations in via hole dimensions or hole plating thickness affect the connections; if the holes are too small, the pins may be bentor permanently deformed and if the holes are too large they will not form gas tight connections.The goal of this project was to understand how rework of these new high speed pressfit connectors affects connection strengths, hole wall deformations and plating cracks.
Technical Library | 2020-05-07 03:46:27.0
The selective soldering process has evolved to become a standard production process within the electronics assembly industry, and now accommodates a wide variety of through-hole component formats in numerous applications. Most through-hole components can be easily soldered with the selective soldering process without difficulty, however some types of challenging components require additional attention to ensure optimum quality control is maintained. Several high thermal mass components can place demands on the selective soldering process, while the use of specialized solder fixtures and/or pallets often places an additional thermal demand on the preheating process. Fine-pitch through-hole components and connectors place a different set of demands on the selective soldering process and typically require special attention to lead projection and traverse speed to minimize bridging between adjacent pins. Dual in-line memory module (DIMM) connectors, compact peripheral component interface (cPCI) connectors, coax connectors and other high thermal mass components as well as fine-pitch microconnectors,can present challenges when soldered into backplanes or multilayer printed circuit board assemblies. Adding to this challenge, compact peripheral component interface connectors can present additional solderability issues due to their beryllium copper termination pins.
Technical Library | 2021-08-18 01:30:18.0
The interfacing of soft and hard electronics is a key challenge for flexible hybrid electronics. Currently, a multisubstrate approach is employed, where soft and hard devices are fabricated or assembled on separate substrates, and bonded or interfaced using connectors; this hinders the flexibility of the device and is prone to interconnect issues. Here, a single substrate interfacing approach is reported, where soft devices, i.e., sensors, are directly printed on Kapton polyimide substrates that are widely used for fabricating flexible printed circuit boards (FPCBs).
Technical Library | 2016-11-10 08:56:54.0
It goes without saying that every manufacturer wants to ensure they are producing a quality product. Standards and specifications from various organizations provide a guideline from which manufacturers can measure different areas of quality, while also providing the end user with the reassurance that they are purchasing a trustworthy, long-lasting product. Within the wire processing industry there are many standards that manufacturers may choose or be required to adhere to. These standards and specifications are constantly evolving and increasing in detail, especially as monitoring technology improves.
Technical Library | 2018-06-13 11:42:00.0
The art of screen printing solder paste for the surface mount community has been discussed and presented for several decades. However, the impending introduction of passive Metric 0201 devices has reopened the need to re-evaluate the printing process and the influence of stencil architecture. The impact of introducing apertures with architectural dimensions’ sub 150um whilst accommodating the requirements of the standard suite of surface mount connectors, passives and integrated circuits will require a greater knowledge of the solder paste printing process.The dilemma of including the next generation of surface mount devices into this new heterogeneous environment will create area ratio challenges that fall below todays 0.5 threshold. Within this paper the issues of printing challenging area ratio and their associated aspect ratio will be investigated. The findings will be considered against the next generation of surface mount devices.
Technical Library | 2019-01-20 22:47:35.0
With the rapid development of the electronics industry, more and more components such as integrated circuits and connectors, relays, power modules, etc. need to be packaged with IC tubes. The anti static ic tubes is actually a kind of pvc plastic(reference to : What are the materials for IC tubes) profile, the size varies with the shape of the installed product, the precision requirement is high, the wall thickness should be controlled within ±0.1mm, and the surface is required to have no impurity spots, smooth and transparent. The IC packaging tubes produced by Sewate Technology Co., Ltd. are extruded. The typical process flow is: extrusion, vacuum adsorption setting, traction, fixed length cutting and directional discharge, deburring, immersion antistatic liquid, drying, testing, packaging and storage
Technical Library | 2019-02-27 15:23:47.0
A study was performed to investigate, evaluate and qualify new reworkable underfill materials to be used primarily with ball grid arrays (BGAs), Leadless SMT devices, QFNs, connectors and passive devices to improve reliability. The supplier of the sole source, currently used underfill, has indicated they may discontinue its manufacture in the near future. The current underfill material is used on numerous circuit card assemblies (CCAs) at several sites and across multiple programs/business areas. In addition, it is used by several of our contract CCA suppliers.The study objectives include evaluation of material properties for down select, dispensability and rework evaluation for further down select, accelerated life testing for final selection and qualification; and process development to implement into production and at our CCA suppliers. The paper will describe the approach used, material property test results and general findings relative to process characteristics and rework ability.
Technical Library | 2016-05-19 16:03:37.0
As consumers become more reliant on their handheld electronic devices and take them into new environments, devices are increasingly exposed to situations that can cause failure. In response, the electronics industry is making these devices more resistant to environmental exposures. Printed circuit board assemblies, handheld devices and wearables can benefit from a protective conformal coating to minimize device failures by providing a barrier to environmental exposure and contamination. Traditional conformal coatings can be applied very thick and often require thermal or UV curing steps that add extra cost and processing time compared to alternative technologies. These coatings, due to their thickness, commonly require time and effort to mask connectors in order to permit electrical conductivity. Ultra-thin fluorochemical coatings, however, can provide excellent protection, are thin enough to not necessarily require component masking and do not necessarily require curing. In this work, ultra-thin fluoropolymer coatings were tested by internal and industry approved test methods, such as IEC (ingress protection), IPC (conformal coating qualification), and ASTM (flowers-of-sulfur exposure), to determine whether this level of protection and process ease was possible.
1 |