Technical Library: nondestructive (Page 1 of 2)

Considerations for Minimizing Radiation Doses to Components during X-ray Inspection

Technical Library | 2022-02-21 19:49:16.0

The ability to undertake non-destructive testing on semiconductor devices, during both their manufacture and their subsequent use in printed circuit boards (PCBs), has become ever more important for checking product quality without compromising productivity. The use of x-ray inspection not only provides a potentially non-destructive test but also allows investigation within optically hidden areas, such as the wire bonding within packages and the quality of post solder reflow of area array devices (e.g. BGAs, CSPs and flip chips).

Nordson DAGE

PCB Quality Metrics that Drive Reliability

Technical Library | 2023-01-23 20:50:05.0

PDC Outline Section 0: Intro Section 1: What is reliability and root cause? Section 2: Overview of failure mechanisms Section 3: Failure analysis techniques – Non-destructive analysis techniques – Destructive analysis – Materials characterization Section 4: Summary and closure

NASA Office Of Safety And Mission Assurance

Defect Features Detected by Acoustic Emission for Flip-Chip CGA/FCBGA/PBGA/FPBGA Packages and Assemblies

Technical Library | 2017-06-22 17:11:53.0

C-mode scanning acoustic microscopy (C-SAM) is a non-destructive inspection technique showing the internal features of a specimen by ultrasound. The C-SAM is the preferred method for finding “air gaps” such as delamination, cracks, voids, and porosity. This paper presents evaluations performed on various advanced packages/assemblies especially flip-chip die version of ball grid array/column grid array (BGA/CGA) using C-SAM equipment. For comparison, representative x-ray images of the assemblies were also gathered to show key defect detection features of the two non-destructive techniques.

Jet Propulsion Laboratory

XRF Technology In The Field - XRF Technology For Non-Scientists

Technical Library | 2022-03-21 19:00:07.0

X-ray fluorescence (XRF): a non-destructive analytical technique used to determine the chemical composition of materials XRF occurs when a fluorescent (or secondary) X-ray is emitted from a sample that is being excited by a primary X-ray source. Because this fluorescence is unique to the elemental composition of the sample, XRF is an excellent technology for qualitative and quantitative analysis of the material composition. XRF spectrometry has a broad range of applications in industry, which we will discuss later in this ebook.

Thermo Fisher Scientific

Comparing Digital and Analogue X-ray Inspection for BGA, Flip Chip and CSP Analysis

Technical Library | 2023-11-20 18:49:11.0

Non-destructive testing during the manufacture of printed wiring boards (PWBs) has become ever more important for checking product quality without compromising productivity. Using x-ray inspection, not only provides a non-destructive test but also allows investigation within optically hidden areas, such as the quality of post solder reflow of area array devices (e.g. BGAs, CSPs and flip chips). As the size of components continues to diminish, today's x-ray inspection systems must provide increased magnification, as well as better quality x-ray images to provide the necessary analytical information. This has led to a number of x-ray manufacturers offering digital x-ray inspection systems, either as standard or as an option, to satisfy these needs. This paper will review the capabilities that these digital x-ray systems offer compared to their analogue counterparts. There is also a discussion of the various types of digital x-ray systems that are available and how the use of different digital detectors influences the operational capabilities that such systems provide.

Nordson DAGE

Method for Automated Nondestructive Analysis of Flip Chip Underfill

Technical Library | 2008-11-06 02:17:59.0

For many years Acoustic Micro Imaging (AMI) techniques have been utilized to evaluate the quality of the underfill used to support the solder bump interconnections of Flip Chip type devices. AMI has been established as one of the few techniques that can provide reliability and quality control data, but little has been done to automate the evaluation process for Flip Chip underfill until now.

Sonoscan, Inc.

Evaluating The Accuracy Of a Nondestructive Thermocouple Attach Method For Area-Array Package Profiling

Technical Library | 2011-01-06 18:03:18.0

The oven recipe, which consists of the reflow oven zone temperature settings and the speed of the conveyor, will determine a specific time‐temperature profile for a given PCB assembly. In order to achieve a good quality PCB assembly, the time‐temperature

KIC Thermal

Control of the Underfill of Surface Mount Assemblies by Non-Destructive Techniques

Technical Library | 2016-04-28 14:43:23.0

Underfilling is a long-standing process issued from the micro-electronics that can enhance the robustness and the reliability of first or second-level interconnects for a variety of electronic applications. Its usage is currently spreading across the industry fueled by the decreasing reliability margins induced by the miniaturization and interconnect pitch reduction. (...) This paper will address the control of surface mount under filled assemblies, focusing on applicable inspection techniques and possible options to overcome their limitations.

THALES

Nondestructive Inspection of Underfill Layers Stacked up in Ceramics-Organics-Ceramics Packages with Scanning Acoustic Tomography (SAT)

Technical Library | 2017-06-15 00:44:19.0

Ceramics packages are being used in the electronics industry to operate the devices in harsh environments. In this paper we report a study on acoustic imaging technology for nondestructively inspecting underfill layers connecting organic interposers sandwiched between two ceramics substrates.First, we inspected the samples with transmission mode of scanning acoustic tomography (SAT) system, an inspection routine usually employed in assembly lines because of its simpler interpretation criteria: flawed region blocks the acoustic wave and appears darker. In this multilayer sample, this approach does not offer the crucial information at which layer of underfill has flaws. To resolve this issue, we use C-Mode Scanning in reflection mode to image layer by layer utilizing ultrasound frequencies from 15MHz to 120MHz. Although the sample is thick and contains at least 5 internal material interfaces, we are able to identify defective underfill layer interfaces.

Flex (Flextronics International)

Investigation of Pad Cratering in Large Flip-Chip BGA using Acoustic Emission

Technical Library | 2013-01-03 20:27:54.0

Electronics assemblies with large flip-chip BGA packages can be prone to either pad cratering or brittle intermetallic (IMC) failures under excessive PCB bending. Pad cratering cracks are not detected by electrical testing or non-destructive inspection methods, yet they pose a long term reliability risk since the cracks may propagate under subsequent loads to cause electrical failure. Since the initiation of pad cratering does not result in an instantaneous electrical signature, detecting the onset of this failure has been challenging. An acoustic emission methodology was recently developed by the authors to detect the onset of pad cratering. The instantaneous release of elastic energy associated with the initiation of an internal crack, i.e., Acoustic Emission (AE), can be monitored to accurately determine the onset of both pad cratering and brittle intermetallic (IMC) failures.

Cisco Systems, Inc.

  1 2 Next

nondestructive searches for Companies, Equipment, Machines, Suppliers & Information

SMT feeders

High Precision Fluid Dispensers
Selective Soldering Nozzles

High Throughput Reflow Oven
Software for SMT

World's Best Reflow Oven Customizable for Unique Applications
PCB Depanelizers

"Find out how you can receive priority in SMTnet Search with out Sponsor membership."