Technical Library | 2017-11-14 15:30:04.0
Can you put a product that hasn't been fully tested on the market? When it comes to Printed Circuit Board (PCB) assembly and manufacturing, most firms’ answer is neither a strict yes or no.
Technical Library | 2008-12-03 19:39:00.0
This paper presents the analysis from a recent printing study employing a test vehicle that includes components such as 01005s to QFPs. In a recent publication, part of this study was presented focusing on 01005 printing only. This printing process was determined to be suitable for 01005s assembly and also analyzed based on statistical capability. The current paper will present the results from additional detailed analysis to determine if this process has the capability to provide sufficient solder paste deposits for larger components located on the same test board. In the future, the SMT industry may always look towards “Broadband Printing” as an alternative to dual stencil or stepped stencil printing technologies in order to meet the needs of both small and large components.
Technical Library | 2021-03-24 01:26:05.0
In-circuit test (ICT) has remained one of the most popular and cost-effective test methods for medium and high volume printed circuit board assembly (PCBA) for many years. This is due to its component-level fault diagnosis capability- and its speed.
Technical Library | 2013-03-28 16:18:22.0
For the last couple of years, the main concerns regarding the electrical performance of blank PCB boards were impedance and ohmic resistance. Just recently, the need to reduce insertion loss came up in discussions with blank board customers (...) The paper describes the test vehicle and the testing methodology and discusses in detail the electrical performance characteristics. The influence of the independent variables on the performance characteristics is presented. Finally the thermal reliability of the boards built applying different copper foils and oxide replacements was investigated.
Technical Library | 2022-09-25 20:18:33.0
Printed circuit board (PCB) bending and/or flexing is an unavoidable phenomenon that is known to exist and is easily encountered during electronic board assembly processes. PCB bending and/or flexing is the fundamental source of tensile stress induced on the electronic components on the board assembly. For more brittle components, like ceramic-based electronic components, micro-cracks can be induced, which can eventually lead to a fatal failure of the components. For this reason, many standards organizations throughout the world specify the methods under which electronic board assemblies must be tested to ensure their robustness, sometimes as a pre-condition to more rigorous environmental tests such as thermal cycling or thermal shock.
Technical Library | 2006-07-14 11:48:11.0
The perennial question in electronics design and manufacture is: "How do I design a printed circuit board (PCB) so that it can be properly tested?" To achieve this objective, there are a number of design-for-test (DFT) considerations and techniques. Some are major, others, minor. However, the total contributes to a highly effective PCB design so that testing procedures applied to a given design result in high 90 percent plus test coverage.
Technical Library | 1999-05-07 11:24:21.0
Many manufacturers have now completed the conversion to no clean solder paste. Many factors governed this initial conversion, among those being cosmetics, solder ability, and process ability. In circuit testing or probing through no clean solder paste residues has topically not been a major factor in the conversion decision for several reasons. Due to board design, solder paste was only used on one side of the board and not subjected to testing...
Technical Library | 2021-08-23 01:53:13.0
After the equipment was introduced, the production capacity was increased by 20%, and the number of operators was reduced by 50%. Employees' salary expenses have been reduced by RMB 120,000 per year, and the pass-through rate has increased by 10% .
Technical Library | 2021-03-10 23:57:29.0
Latent short circuit failures have been observed during testing of Printed Circuit Boards (PCB) for power distribution of spacecraft of the European Space Agency. Root cause analysis indicates that foreign fibers may have contaminated the PCB laminate. These fibers can provide a pathway for electromigration if they bridge the clearance between nets of different potential in the presence of humidity attracted by the hygroscopic laminate resin. PCB manufacturers report poor yield caused by contamination embedded in laminate. Inspections show ...
Technical Library | 2021-01-21 02:04:27.0
Traditional single level microvia structures are generally considered the most robust type of interconnection within a printed wire board (PWB) substrate. The rapid implementation of HDI technology now commonly requires between 2, 3 or 4 levels of microvias sequentially processed into the product. Recent OEM funded reliability testing has confirmed that by increasing the levels (stack height) these structures are proving less reliable, when compared to their single or double level counterparts. Recently false positive results have been recorded on products tested with traditional thermal shock testing methodology (cycling between -40°C and 125°C, or 145°C). A number of companies are incurring product failures resulting in increased costs associated with replacing the circuit boards, components and added labour.