Electronics Manufacturing Training

Technical Articles From CALCE Center for Advanced Life Cycle Engineering

Read technical articles about electronics manufacturing added by CALCE Center for Advanced Life Cycle Engineering


10 technical articles added by CALCE Center for Advanced Life Cycle Engineering

Company Information:

The largest electronic products research center focused on electronics reliability, is dedicated to providing a knowledge and resource base to support the development of competitive electronic components, products and systems.

College Park, Maryland, USA

Consultant / Service Provider, Training Provider

  • Phone 301-405-5323
  • Fax 301-314-9269

See Company Website »

Company Postings:

(10) technical library articles

(14) news releases

Adhesion and Puncture Strength of Polyurethane Coating Used to Mitigate Tin Whisker Growth

Jan 26, 2022 | Kenny Mahan, Yong Sun, Bongtae Han1, Sungwon Han, Mike Osterman

Reliability of conformal coatings used to mitigate tin whisker growth depends on their ability to contain tin whiskers. Two key material properties required to assess the reliability of a polyurethane coating are documented experimentally: adhesion strength and puncture strength. A modified blister test using a predefined blister area is employed to assess the adhesion strength and a puncture test is employed to evaluate the puncture strength of the coating. After measuring the properties at time zero, the coatings are subjected to accelerated testing conditions (high temperature/humidity storage and temperature cycling) and the degradations of the coating properties are documented....

Using Simulation to Optimize Microvia Placement and Materials to Avoid Failure During Reflow

Dec 21, 2021 | Dr. Kourosh Kalayeh, Dr. Nathan Blattau

This paper cover the following points: - Objective 01: Preprocessing, - Introduction, - Objective 02: Automated FE Scripting, - Objective 03: Postprocessing, Reliability Analysis of PTHs, - Objective 03: Postprocessing, Manufacturability of Microvias...

Reliability Evaluation of One-Pass and Two-Pass Techniques of Assembly for Package on Packages under Torsion Loads

Dec 16, 2021 | Vikram Srinivas, Michael Osterman, Robert Farrell

Package on Packages (PoP) find use in applications that require high performance with increased memory density. One of the greatest benefits of PoP technology is the elimination of the expensive and challenging task of routing high-speed memory lines from under the processor chip out to memory chip in separate packages. Instead, the memory sits on top of the processor and the connections are automatically made during assembly. For this reason PoP technology has gained wide acceptance in cell phones and other mobile applications. PoP technology can be assembled using one-pass and two-pass assembly processes. In the one-pass technique the processor is first mounted to the board, the memory is mounted to the processor and the finished board is then run through the reflow oven in a single pass. The two-pass technique has an intermediate step in which the memory is first mounted onto the processor....

Modeling Temperature Cycle Fatigue Life of Select SAC Solders

Sep 08, 2021 | Michael Osterman

While the presence of silver in SAC solder provided excellent temperature cycling durability, the silver in high silver SAC alloy also made the solders susceptible to failures under drop/shock loading. To improve the drop/shock reliability, the silver content in SAC alloys was reduced from three percent, to as low as no silver. Solder dopants, also known as microalloy additions, are elements (typically 0.1% or lower) other than the main constituents of the alloy that have been shown to improve solder performance. Commonly used microalloy additions include nickel (Ni), bismuth (Bi), manganese (Mn), and antimony (Sb)....

Controlling Moisture in Printed Circuit Boards

May 01, 2019 | Bhanu Sood, Michael Pecht

Moisture can accelerate various failure mechanisms in printed circuit board assemblies. Moisture can be initially present in the epoxy glass prepreg, absorbed during the wet processes in printed circuit board manufacturing, or diffuse into the printed circuit board during storage. Moisture can reside in the resin, resin/glass interfaces, and micro-cracks or voids due to defects. Higher reflow temperatures associated with lead-free processing increase the vapor pressure, which can lead to higher amounts of moisture uptake compared to eutectic tin-lead reflow processes. In addition to cohesive or adhesive failures within the printed circuit board that lead to cracking and delamination, moisture can also lead to the creation of low impedance paths due to metal migration, interfacial degradation resulting in conductive filament formation, and changes in dimensional stability. Studies have shown that moisture can also reduce the glass-transition temperature and increase the dielectric constant, leading to a reduction in circuit switching speeds and an increase in propagation delay times.

This paper provides an overview of printed circuit board fabrication, followed by a brief discussion of moisture diffusion processes, governing models, and dependent variables. We then present guidelines for printed circuit board handling and storage during various stages of production and fabrication so as to mitigate moisture-induced failures....

Analysis of Laminate Material Properties for Correlation to Pad Cratering

Oct 20, 2016 | Carlos Morillo, Yan Ning, Michael H. Azarian, Julie Silk, Michael Pecht.

Pad cratering failure has emerged due to the transition from traditional SnPb to SnAgCu alloys in soldering of printed circuit assemblies. Pb-free-compatible laminate materials in the printed circuit board tend to fracture under ball grid array pads when subjected to high strain mechanical loads. In this study, two Pb-free-compatible laminates were tested, plus one dicycure non-Pb-free-compatible as control. One set of these samples were as-received and another was subjected to five reflows. It is assumed that mechanical properties of different materials have an influence on the susceptibility of laminates to fracture. However, the pad cratering phenomenon occurs at the layer of resin between the exterior copper and the first glass in the weave. Bulk mechanical properties have not been a good indicator of pad crater susceptibility.

In this study, mechanical characterization of hardness and Young’s modulus was carried out in the critical area where pad cratering occurs using nano-indentation at the surface and in a cross-section. The measurements show higher modulus and hardness in the Pb-free compatible laminates than in the dicy-cured laminate. Few changes are seen after reflow – which is known to have an effect -- indicating that these properties do not provide a complete prediction. Measurements of the copper pad showed significant material property changes after reflow....

Influence of Plating Quality on Reliability of Microvias

May 12, 2016 | Yan Ning, Michael H. Azarian, Michael Pecht

Advances in miniaturized electronic devices have led to the evolution of microvias in high density interconnect (HDI) circuit boards from single-level to stacked structures that intersect multiple HDI layers. Stacked microvias are usually filled with electroplated copper. Challenges for fabricating reliable microvias include creating strong interface between the base of the microvia and the target pad, and generating no voids in the electrodeposited copper structures. Interface delamination is the most common microvia failure due to inferior quality of electroless copper, while microvia fatigue life can be reduced by over 90% as a result of large voids, according to the authors’ finite element analysis and fatigue life prediction. This paper addresses the influence of voids on reliability of microvias, as well as the interface delamination issue. ...

Reliability of Embedded Planar Capacitors under Temperature and Voltage Stress

May 21, 2015 | Mohammed A. Alam, Michael H. Azarian, Michael Osterman and Michael Pecht

In this work the reliability of an embedded planar capacitor laminate under temperature and voltage stress is investigated. The capacitor laminate consisted of an epoxy-BaTiO3 composite sandwiched between two layers of copper. The test vehicle with the embedded capacitors was subjected to a temperature of 125oC and a voltage bias of 200 V for 1000 hours. Capacitance, dissipation factor, and insulation resistance were monitored in-situ. Failed capacitors exhibited a sharp drop in insulation resistance, indicating avalanche breakdown. The decrease in the capacitance after 1000 hours was no more than 8% for any of the devices monitored. The decrease in the capacitance was attributed to delamination in the embedded capacitor laminate and an increase in the spacing between the copper layers....

Screening for Counterfeit Electronic Parts

Feb 20, 2014 | Bhanu Sood and Diganta Das

In this chapter, we discuss the type of parts used to create counterfeits and the defects/degradations inherent in these parts due to the nature of the sources they come from, proposed inspection standards, and limitations of these standards. The processes used to modify the packaging of these parts to create counterfeits are then discussed along with the traces left behind from each of the processes. We then present a systematic methodology for detecting signs of possible part modifications to determine the risk of a part or part lot being counterfeit....

Impact of Dust on Printed Circuit Assembly Reliability

May 09, 2013 | Bo Song, Michael H. Azarian and Michael G. Pecht

Atmospheric dust consists of solids suspended in air. Dust is well known for its complex nature. It normally includes inorganic mineral materials, water soluble salts, organic materials, and a small amount of water. The impact of dust on the reliability of printed circuit board assemblies (PCBAs) is ever-growing, driven by the miniaturization of technology and the increasing un-controlled operating conditions with more dust exposure in telecom and information industries... First published in the 2012 IPC APEX EXPO technical conference proceedings....

best reflow oven

Online IPC Training & Certification